1) the product of geometric series
几何加权级数的乘积和
1.
Considering the product of geometric series,where negatively associated sequences are identically distributed with mean zero and variance 1,a law of iterated logarithm obtained when β converges to one.
为了进一步研究NA列,对同分布NA随机变量列,在期望为0,方差为1的条件下,建立了几何加权级数的乘积和在β趋于1时的重对数律。
2) geometric series
几何加权级数
1.
The law of the iterated logarithm of geometric series for negatively associated sequence;
NA列几何加权级数的重对数律
3) geometrical weighted sum
几何加权和
1.
In this paper, we study the generalized law of the iterated logarithm for the geometrical weighted sum of λ\| mixing identically random variables sequence {X,X n,n≥1} i.
本文证明了同分布的λ 混合随机变量序列 {X ,Xn,n≥ 1 }几何加权和的广义重对数律 ,即当混合系数λ(1 ) <1和X的负部存在某阶矩时 ,以概率 1地有limsupn→∞(b -1 ) ∑ni =1 biXi/bn+1 =X的本性上确界 ,其中b >
4) weighted product sums
加权乘积和
1.
Finally,the strong large laws of weighted product sums for identitily distributed ρ~*-mixing sequences are estabilished under certain conditions and so the Kolmogorov and Marcinkiewicz SLLN are proved to be right to the product sums.
讨论了ρ*混合序列部分和上升的阶,通过矩的和对部分和Sn上升的阶给出某种意义上的最佳估计;同时讨论了不同分布的ρ*混合序列服从Kolmogorov强大数律的条件;最后还讨论了在一定条件下同分布的ρ*混合序列加权乘积和的强大数律,把Kolmogorov强大数律和Marcinkiewicz强大数定律推广到乘积和的形式。
2.
From a thorough discussion about the strong stability for the mixed sequential weighted product sums,Jamison theorem in independent situation is further developed and improved.
讨论了混合序列加权乘积和的强稳定性,推广和改进了独立情形的Jamison等定理。
3.
In this paper, we discuss the complete convergence of weighted product sums for NA sequences, some of the results are better than that of iid sequences which has been known.
本文讨论了NA列的几类加权部分和及加权乘积和的完全收敛性,其中部分结果要优于iid列的已知结
5) summation of geometric progression
几何级数求和
6) weighted geometrie average
加权几何平均数
补充资料:因侵害姓名权、肖像权、名誉权、荣誉权产生的索赔权
因侵害姓名权、肖像权、名誉权、荣誉权产生的索赔权:公民、法人的姓名权、名称权,名誉权、荣誉权、受到侵害的有权要求停止侵害,恢复名誉,消除影响,赔礼道歉,并可以要求赔偿损失。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条