1) anti-symmetric solution
反对称解
1.
The following matrix equation is considered:WTAX±XA~T=D(where A is normal matrix) and AX±XA~T=0,the conditions for the existence of symmetric and anti-symmetric solutions are studied,the explicit solutions of the equations are also given.
讨论了矩阵方程AX±XAT=D(A为正规矩阵)及AX±XAT=0的对称解和反对称解,并给出了有解的条件及解的通式。
2.
The necessary and sufficient conditions for the matrix equation AXAT = D having symmetric and anti-symmetric solutions are studied.
考虑了矩阵方程AXA~T=D有对称与反对称解的充分必要条件,并给出了通解的表达式。
3.
By this iteration method,the solvability of the equation over anti-symmetric X can be determined automatically,when the equation is consistent over anti-symmetric X,its least-norm anti-symmetric solution can be obtained by choosing a special kind of initial iteration matrix.
建立了求矩阵方程AXB=C反对称解的迭代方法。
2) anti-symmetric sign-changing solutions
反对称变号解
1.
In this paper,the existence of multiple anti-symmetric sign-changing solutions for a nonlinear third-order three-point boundary value problem is investigated by using Krasnosel skii fixed point theorem and the method of extending positive or negative solution.
利用Krasnosel′skii不动点定理及延拓正(负)解的方法,证明了一类非线性三阶三点边值问题,当其非线性项满足某些假设条件时,具有无穷多个反对称变号解。
4) symmetry and antisymmetry
对称反对称
5) symmetrical-antisymmetric
对称—反对称
6) Solution of eguation/Skew symmetrie matrix
方程解/反对称矩阵
补充资料:反对称波函数
分子式:
CAS号:
性质:满足反对称性的波函数。对于电子体系而言,波函数对于电子坐标的交换必须是反对称的,否则计算得到的结果并不能正确地反映电子间的费米相关,即相同自旋取向的电子的运动是相互制约的这个事实。利用斯莱特行列式波函数或用反对称化算符作用在试探函数上就可得到反对称波函数。
CAS号:
性质:满足反对称性的波函数。对于电子体系而言,波函数对于电子坐标的交换必须是反对称的,否则计算得到的结果并不能正确地反映电子间的费米相关,即相同自旋取向的电子的运动是相互制约的这个事实。利用斯莱特行列式波函数或用反对称化算符作用在试探函数上就可得到反对称波函数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条