1) symmetric solution
对称解
1.
Then,by the generalized singular value decomposition,a general symmetric solution of the minimum residual problem is obtained.
主要给出了矩阵的最小剩余问题及其最优近似问题的对称解。
2.
And then,it is discussed that there are not only one symmetric solutions in the sudden-expansion flows of open channel and round pipe.
同时,讨论了明渠突扩流动和圆管突扩流动中存在的不止一个对称解问题,并就此问题未被重视的原因进行了初步分析。
3.
An recursive algorithm to solve the linear matrix equation AX+XB=F over symmetric solutions is put forward in this paper.
提出一种求矩阵方程AX+XB=F对称解的递推算法,该算法不仅能够用于对称解存在性的判断问题,而且能够用于对称解的计算问题。
3) bisymmetric solution
双对称解
1.
An algorithm was constructed to solve the least squares bisymmetric solution of a class of matrix equation.
构造了一种迭代法求一类矩阵方程的最小二乘双对称解。
4) anti-symmetric solution
反对称解
1.
The following matrix equation is considered:WTAX±XA~T=D(where A is normal matrix) and AX±XA~T=0,the conditions for the existence of symmetric and anti-symmetric solutions are studied,the explicit solutions of the equations are also given.
讨论了矩阵方程AX±XAT=D(A为正规矩阵)及AX±XAT=0的对称解和反对称解,并给出了有解的条件及解的通式。
2.
The necessary and sufficient conditions for the matrix equation AXAT = D having symmetric and anti-symmetric solutions are studied.
考虑了矩阵方程AXA~T=D有对称与反对称解的充分必要条件,并给出了通解的表达式。
3.
By this iteration method,the solvability of the equation over anti-symmetric X can be determined automatically,when the equation is consistent over anti-symmetric X,its least-norm anti-symmetric solution can be obtained by choosing a special kind of initial iteration matrix.
建立了求矩阵方程AXB=C反对称解的迭代方法。
6) axial-symmetric solution
轴对称解
补充资料:对称与非对称
反映客观事物在结构、功能、时空上的特殊联系的范畴。对称指事物以一定的中介进行某种变化时出现的不变性,非对称指事物以一定的中介进行某种变化时出现的可变性。在自然界中普遍存在,形式多样。对称有空间对称(包括形象对称和结构对称)、时间对称、概念对称等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条