1) FFT
快速傅立叶变换FFT
2) Fast Fourier Transform (FFT)
快速傅立叶变换(FFT)
3) Fast Fourier transform(FFT)
快速傅立叶变换(FFT)
4) FFT
快速傅立叶变换(FFT)
5) fast
快速
1.
Application of the fast sulphur determination device of intelligence in Panbei Coal Preparation Plant;
快速智能定硫仪在盘北选煤厂的应用
2.
New technology for fast purifying high turbidity sewage;
高浊度污水快速净化新技术
3.
Comprehensive Mechanized Coal Face Install Experience Discussion fast;
综采面快速安装经验探讨
6) Quick
快速
1.
Optimization of Quick Maintaining Green Color,Keeping Crispness and Freshness of the Pteridium Aguilinum kuhnvar;
蕨菜快速护绿保脆保鲜工艺优化研究
2.
The quick three dimensional numerical simulation of multistage compressor;
多级压气机快速三维数值模拟
参考词条
补充资料:快速傅立叶变换
快速傅氏变换 英文名是fast fourier transform
快速傅氏变换(fft)是离散傅氏变换(dft)的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。
设x(n)为n项的复数序列,由dft变换,任一x(m)的计算都需要n次复数乘法和n-1次复数加法,而一次复数乘法等于四次实数乘法和两次实数加法,一次复数加法等于两次实数加法,即使把一次复数乘法和一次复数加法定义成一次“运算”(四次实数乘法和四次实数加法),那么求出n项复数序列的x(m),即n点dft变换大约就需要n2次运算。当n=1024点甚至更多的时候,需要n2=1048576次运算,在fft中,利用wn的周期性和对称性,把一个n项序列(设n=2k,k为正整数),分为两个n/2项的子序列,每个n/2点dft变换需要(n/2)2次运算,再用n次运算把两个n/2点的dft变换组合成一个n点的dft变换。这样变换以后,总的运算次数就变成n+2(n/2)2=n+n2/2。继续上面的例子,n=1024时,总的运算次数就变成了525312次,节省了大约50%的运算量。而如果我们将这种“一分为二”的思想不断进行下去,直到分成两两一组的dft运算单元,那么n点的dft变换就只需要nlog2n次的运算,n在1024点时,运算量仅有10240次,是先前的直接算法的1%,点数越多,运算量的节约就越大,这就是fft的优越性。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。