说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Toeplitz化
1)  Toeplitz technique
Toeplitz化
1.
Application of Toeplitz technique to beamforming algorithm based on shipborne uniform circular array;
Toeplitz化技术在舰载圆阵波束形成算法中的应用
2.
Application of the Toeplitz technique to ESB adaptive beamforming;
Toeplitz化在ESB自适应波束形成算法中的应用
2)  Toeplitz approximation
Toeplitz化处理
1.
It presented the Toeplitz approximation eigenspace-based linearly constrained minimum variance adaptive beam-forming algorithm(TELCMV).
该算法利用阵列接收信号的相关性进行Toeplitz化处理、把期望信号方向向量向信号子空间投影、进行线性约束最小方差波束形成来得到TELCMV权向量;TELCMV权向量没有包含噪声子空间的分量,而期望信号和干扰信号的输出不变,所以提高了输出信干噪比(SINR),收敛速度也快,在低信噪比和小快拍数下能取得较好的波束形成性能。
3)  iterative Toeplitz
迭代Toeplitz化
4)  bi-Toeplitz
双-Toeplitz
5)  partial position symmetry
Toeplitz阵
6)  Toeplitz product
Toeplitz积
1.
Toeplitz products on the Bergman space of the unit ball
单位球Bergman空间上的Toeplitz积
补充资料:Toeplitz矩阵


Toeplitz矩阵
Toeplitz matrix

悠落,“吐一‘· 这些条件对于由把一个序列{、。}通过矩阵(a。*)变换成序列{。。}: 。。一*客,a一,*而定义的矩阵求和法(耳必trixs切rn丑.tiozl nrthed)的正则性(见正则求和法(regUlars切爪mation脱th以七))是必要充分的.这些条件对正则性的必要性和充分性在三角形矩阵的情形是由0.予哭plit:所证明的.【补注】在文献中术语“T吮plitZ矩阵”也用于具有性质:aj*仅依赖差j一k,即对所有j和人,aj*=:,一*的(有限或无限)矩阵(气*).以下资料是关于这意义下工沈p比矩阵的. 有限予沈plits矩阵在统计学、信号处理与系统理论中有重要应用.对这样的矩阵有不同的求逆算法(N.Levinson,I,Schur和其他人).一个有限玉祀pljtz矩阵A=(:,一*)犷,*一1的逆不是TocplitZ的,但是它有以下形式:A一’二(AI) 「「二。。…01「夕.、,_1…夕_。:一、;】{{义1‘。…”{{“夕。‘’.y一{+ LL‘·’一1…‘。J Loo“‘yoJ r。。。,二。。〕r。、_二_,…、.1) Iv_00…00}}0 ox_…x。}}一}夕_。*,y_。O“’00}}·……1>, }..……,1」0 00…x」! Ly一y一y一3’二y一0」L“00“.“」)其中假定x。举0,且x。,…,x。和先。,…,y《,是以下方程的解:*虱“,一x*一“,。,*瓦:,一*夕*一。一。,。(、一o,。·,n).这里占‘*是K-ronecker符号.公式(AI)称为rox-余pr一SeITrncul公式(Gohberg一S~ul fomlula))(见【A41).关于这方向的进一步发展见tAS],[灿]. 无穷工咒plit“矩阵〔“,一*)厂*一、在田bert空间l:上定义了一个重要的算子类,可以借助于它们的象征艺界一。:,尸,以}一1来分析.这些算子的理论是.1飞喇itZ矩阵【1、州itZ matr议;T范n朋双a MaTp“助“],T矩阵(T一Inat血) 满足以下诸条件的一个无穷矩阵(a。*)。.*一,,2,二 艺la。*1镬M,”=l,2,…,其中M不依赖于川 。峡a。*一0,k一1,2,…;丰富的且包含反演定理(基于象征的因子分解),Fred-llolm定理,用象征的卷绕数来表示的指标的显式公式,对其有限部分的行列式的渐近公式,等等.事实上,无穷Tocplitz矩阵构成了显式反演公式已知的很少的几类算子之一,且它们提供了现代指标理论的第一批例子之一关于最近文献见【A2],【A3],【A71.其矩阵元素的象征是有理的无穷Tocplitz矩阵是特别令人感兴趣的,且对应的算子可借助于数学系统理论中的方法来分析(见IAI」).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条