1) elementary transformation of matrix
矩阵初等变换
1.
The purpose of this paper is to use properties of elementary transformation of matrix to solve some problems of finite dimensional vector space and to get the greatest common factor of two polynomials.
应用矩阵初等变换的一些性质解决有限维向量空间中若干问题和求两个多项式的最大公因式。
2) elementary transformation of matrices
矩阵初等变换
1.
The two application of elementary transformation of matrices to the number theory;
矩阵初等变换在数论中的两个应用
3) matrix elementary operation
矩阵初等变换
1.
In this paper, we search out the greatest common divisor of a group of integers and its combination by matrix elementary operation.
本文给出利用矩阵初等变换求一组整数的最大公因数,以及把它表示成这组数的组合的一个方法,此法常比一般“初等数论”教材中所给方法简单。
5) Elementary transformation of matrix
矩阵的初等变换
1.
By using of operation of partitioned matrix and elementary transformation of matrix, we give the existence theorems of solution, structure of solution, and solving process for the matrix equation A_(m×n)X_(n×p)=B_(m×p).
利用分块矩阵的运算和矩阵的初等变换给出了矩阵方程Am×nXn×p=Bm×p解的存在性、解的结构,以及求解的一种方法。
补充资料:初等矩阵
初等矩阵是指,由单位矩阵经过三种矩阵初等变换得到的矩阵。
(1)交换矩阵中某两行(列)的位置;
(2)用一个非零常熟乘以矩阵的某一行;
(3)将矩阵的某一行(列)乘以常数k后加到另一行上去。
三类初等矩阵都是可逆矩阵,即非异阵。
三类初等矩阵的值是:
(1):-1
(2):k
(3):1
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条