1) generalized primary matrix
广义初等变换矩阵
2) generalized elementary matrices
广义初等矩阵
1.
The article discusses the elementary transformation of partitioned matrices given by generalized elementary matrices and its application in matrix inversion, determinant, rank and eigenvalues of matrices because of the importance of partitioned matrices operation in liner algebra.
鉴于矩阵分块运算在线性代数学中的重要性 ,讨论了由广义初等矩阵给出的分块矩阵初等变换及其在矩阵求逆、矩阵的行列式、秩和特征值等方面的应用 。
3) elementary transformation of matrices
矩阵初等变换
1.
The two application of elementary transformation of matrices to the number theory;
矩阵初等变换在数论中的两个应用
5) Elementary transformation of matrix
矩阵的初等变换
1.
By using of operation of partitioned matrix and elementary transformation of matrix, we give the existence theorems of solution, structure of solution, and solving process for the matrix equation A_(m×n)X_(n×p)=B_(m×p).
利用分块矩阵的运算和矩阵的初等变换给出了矩阵方程Am×nXn×p=Bm×p解的存在性、解的结构,以及求解的一种方法。
6) elementary transformation of matrix
矩阵初等变换
1.
The purpose of this paper is to use properties of elementary transformation of matrix to solve some problems of finite dimensional vector space and to get the greatest common factor of two polynomials.
应用矩阵初等变换的一些性质解决有限维向量空间中若干问题和求两个多项式的最大公因式。
补充资料:初等矩阵
初等矩阵是指,由单位矩阵经过三种矩阵初等变换得到的矩阵。
(1)交换矩阵中某两行(列)的位置;
(2)用一个非零常熟乘以矩阵的某一行;
(3)将矩阵的某一行(列)乘以常数k后加到另一行上去。
三类初等矩阵都是可逆矩阵,即非异阵。
三类初等矩阵的值是:
(1):-1
(2):k
(3):1
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条