说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 多项式解
1)  polynomial solutions
多项式解
1.
The polynomial solutions of extreme position of mechanisms are obtained by the eliminant with the aid of basic sets.
从机构极限位置的定义出发 ,提出了确定机构极限位置的理论 ,并用基组结式消元法求得机构极限位置的多项式解 ,彻底解决了机构极限位置的确定问题。
2.
The system of equations to design mechanisms has been built up according to the value of advance-to return- time ratio K and additional conditions on the basis of paper[1], and polynomial solutions of the system of equations have been found by the elimination by eliminate with the aid of basic sets[2].
本文在文[1]的基础上,按给定的行程速度变化系数 K 的值及附加条件建立设计方程组,并用基组结式消元法[2]求得设计方程组的多项式解
2)  polynomial solution
多项式解
1.
According to the nature of two-dimensional biharmonic equations,this paper obtains a polynomial solution of the biharmonic equation for stress function by means of the MATHEMATICA software.
根据二维双调和方程的特点并借助于MATHEMATICA软件,得到了应力函数双调和方程的多项式解答。
2.
The polynomial solution of free vibraiton properties of conical shell structures was studied.
本文研究了圆锥壳结构自振特性的多项式解
3.
The present polynomial solutions are very sim.
然后根据正交各向异性材料悬臂梁应力分布特点,采用边解法,建立了该问题的应力函数与电势分布函数,进而得到精确多项式解析解。
3)  decrypted polynomial
解密多项式
4)  polynomially solvable
多项式可解
1.
This paper shows that 2-induced-matching cover problem of graphs with diameter 6 and 3-induced-matching cover problem of graphs with diameter 2 axe NP-complete,and 2-induced-matching cover problem of graphs with diameter 2 is polynomially solvable.
这篇文章证明了:直径为6的图的2-导出匹配覆盖问题和直径为2的图的3-导出匹配覆盖问题是NP-完备的,直径为2的图的2-导出匹配覆盖问题多项式可解。
5)  decomposable polynomial
分解多项式
1.
Two ideas, decomposable polynomial and generator polynomial of generalized Toeplize matrices, are given.
给出了广义托普勒兹矩阵的生成多项式和分解多项式的概念;借助于多项式理论证明了复数域 上任意一个n阶托普勒兹矩阵和广义普勒兹矩阵都可分解为n个托普勒兹块阵的乘积。
6)  polynomial decomposition
多项式分解
1.
At first,a parallel structure of the FIR filter is presented based on polynomial decomposition method.
本文首先从多项式分解角度给出一种FIR滤波器的并行结构。
补充资料:多项式乘多项式法则
Image:1173836820929048.jpg
多项式乘多项式法则

先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条