1) rajectory polynomials
解轨迹多项式
1.
The polynomial model of the dynamic response of nonlinear resistance network was derived by using trajectory polynomials approximation,the properties of polynomial coefficients were analyzed with respect to the fault diagnosis,and the fault diagnosis equation based on the trajectory polynomial coefficients was given in terms of the recursive RLS estimating pol.
通过解轨迹多项式拟合导出非线性电阻网络动态响应的多项式模型,分析了多项式系数在故障诊断方面的性质;在递推最小二乘(RLS)方法估计多项式系数的基础上,导出基于解轨迹多项式系数的故障诊断方程。
2) Polynomial motion trajectories
多项式运动轨迹
3) polynomial solution
多项式解
1.
According to the nature of two-dimensional biharmonic equations,this paper obtains a polynomial solution of the biharmonic equation for stress function by means of the MATHEMATICA software.
根据二维双调和方程的特点并借助于MATHEMATICA软件,得到了应力函数双调和方程的多项式解答。
2.
The polynomial solution of free vibraiton properties of conical shell structures was studied.
本文研究了圆锥壳结构自振特性的多项式解。
3.
The present polynomial solutions are very sim.
然后根据正交各向异性材料悬臂梁应力分布特点,采用边解法,建立了该问题的应力函数与电势分布函数,进而得到精确多项式解析解。
4) polynomial solutions
多项式解
1.
The polynomial solutions of extreme position of mechanisms are obtained by the eliminant with the aid of basic sets.
从机构极限位置的定义出发 ,提出了确定机构极限位置的理论 ,并用基组结式消元法求得机构极限位置的多项式解 ,彻底解决了机构极限位置的确定问题。
2.
The system of equations to design mechanisms has been built up according to the value of advance-to return- time ratio K and additional conditions on the basis of paper[1], and polynomial solutions of the system of equations have been found by the elimination by eliminate with the aid of basic sets[2].
本文在文[1]的基础上,按给定的行程速度变化系数 K 的值及附加条件建立设计方程组,并用基组结式消元法[2]求得设计方程组的多项式解。
5) decrypted polynomial
解密多项式
6) polynomially solvable
多项式可解
1.
This paper shows that 2-induced-matching cover problem of graphs with diameter 6 and 3-induced-matching cover problem of graphs with diameter 2 axe NP-complete,and 2-induced-matching cover problem of graphs with diameter 2 is polynomially solvable.
这篇文章证明了:直径为6的图的2-导出匹配覆盖问题和直径为2的图的3-导出匹配覆盖问题是NP-完备的,直径为2的图的2-导出匹配覆盖问题多项式可解。
补充资料:多项式乘多项式法则
Image:1173836820929048.jpg
先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。