说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 广义H-H迹长估计方法
1)  generalized H-H method for trace length estimation
广义H-H迹长估计方法
2)  H-H method for trace length estimation
H-H迹长估计方法
1.
According to geometrical relationship between discontinuities and measuring window and referring to H-H method for trace length estimation,a new expression is proposed to express probability relationship between trace length of discontinuity and its orientation.
为了研究结构面迹长与其产状之间的概率关系,根据结构面交切测量窗口的几何条件与交切频度之间的概率关系,拓展了H-H迹长估计方法,建立了结构面平均迹长与其在测量窗口中视倾角的关系表达式。
3)  H∞/generalized H2
H∞/广义H2
1.
Under the multi-object control framework,an H∞/generalized H2 static output feedback control method was presented for active suspension control.
在多目标控制框架下,提出了一种主动悬架H∞/广义H2静态输出反馈控制方法。
4)  generalized happy number
广义H-数
1.
The results of the height of generalized happy number and relative problems are given.
研究了广义H-数高度以及与之相关的一些问题。
5)  Hlder estimate
Hlder估计
6)  H~1 Error Estimate
H~1估计
补充资料:广义最小二乘估计
      用迭代的松弛算法对线性最小二乘估计的一种改进。线性最小二乘估计在模型误差为相关噪声时是有偏估计,即其估计值存在偏差。这时采用广义最小二乘估计能获得较精确的结果。
  
  假设所讨论的单输入单输出系统的差分方程模型是
  
  式中{uk}和{yk}分别是输入和输出序列:和是算子多项式,它们的系数是需要通过估计来求出的未知数;z-1是单位延迟算子;{ek}是误差序列,它是零均值平稳相关噪声序列。为了进行广义最小二乘估计可以从形式上把ek变换成,这里,它的系数也是未知的。如果{ek}具有有理谱密度,则可把{εk}当作白噪声序列来处理。这样就把系统模型变成
  
  
  
  相应的估计准则是
  
   
  广义最小二乘估计就是使估计准则J为极小的参数估计。多项式A(z-1)、B(z-1)和C(z-1)的系数都是未知的,所以不能用一个线性算法获得广义最小二乘估计。
  
  广义最小二乘估计采用迭代的松弛算法:先行固定C(z-1),估计A(z-1)和B(z-1),使J 趋于极小;然后固定A(z-1)和B(z-1),估计C(z-1),使 J 趋于极小。如此反复迭代,直至估计值收敛。这时每步只进行简单的线性最小二乘估计运算,迭代的初值取扗(z-1)=1。
  
  广义最小二乘估计算法的估计精度高,已得到应用并获得不少成果。它的缺点在于:当信噪比较小时,J可能有多个局部极小点,估计结果不能保证收敛到全局最小点,即参数真值;它的计算量也比线性最小二乘估计增加很多。
  
  这种算法也可推广到多输入多输出系统,并且有相应的近似递推估计算法。当误差{ek}为正态噪声序列时,这种算法还可以解释为极大似然估计的松弛算法。
  
  参考书目
   G.G.哥德温、R.L.潘恩著,张永光、袁震东译:《动态系统辨识:试验设计与数据分析》,科学出版社,北京,1983。(G.C.Goodwin and R.L.Payne,Dynamic System Identification:Experiment Design and Data Analysis, Academic Press, New York,1977.)

  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条