1) grey disperse random process
灰色离散随机过程
3) discrete time stochastic process
离散时间随机过程
4) discrete parameter random process
离散参量随机过程
5) discrete random process
离散随权过程
6) stochastic diffusion processes
扩散随机过程
1.
) Based on analyzing the stochastic fluctuate of agriculture remainder labourers, a stochastic transfer (model) of agriculture remainder labourers is presented using stochastic diffusion processes.
在充分考虑农业剩余劳动力随机转移过程的基础上,借助扩散随机过程理论建立分析模型来描述农业剩余劳动力的动态转移状况;在研究了非农产业发展状况的前提下,建立分布参数系统模型分析全社会各非农行业对农业剩余劳动力的需求;探讨了以寻求农业部门产出最大化为目的的农业剩余劳动力转移的优化策略,并给出在满足目标泛函的前提下农业劳动力转移的适度规模控制方程。
2.
After this, a dynamic model about fertility of plowland is presented using stochastic diffusion processes and distributed parameter system.
在连续时间模型的假设条件下,充分研究了农业耕地中有机物含量及微量元素含量的随机变化过程,首先借助于马尔可夫过程理论确定出转移概率密度函数,然后利用扩散随机过程理论及分布参数系统建立模型描述耕地肥力的状况,探讨了在保证耕地质量的前提下以农业生产者投资收益最大化作为目标值的最优控制问题。
补充资料:离散随机信号处理
离散随机信号处理 discrete random signal processing 利用数字运算,对离散随机信号进行各种滤波处理、离散变换和谱分析。随机信号是一种非确定性的信号,如热噪声信号发生器输出的电信号,飞行器起飞时的结构振动,以及起伏海面的波动高度等。它们的共同特点是无法预测其未来瞬间的精确值。处理的目的是便于从中提取有用的信息,削弱信号中的多余信息量,便于估计信号的特征参数,或变换成易于分析和识别的形式等。 随机信号处理的主要理论基础是信号检测理论、估计理论和随机过程理论。根据理论分析,随机信号的不同样本函数在同一时刻的值往往是不确定的,因而只能用样本函数集的统计平均来描述,如用均值、均方值、方差、概率密度函数、相关函数和功率谱密度函数来描述随机过程的特性。但是,在大多数情况下,被处理的随机信号是具有各态历经的平稳随机过程,它的样本函数集平均可以用某一样本函数的时间平均来确定,这给随机信号的分析和处理带来很大方便。虽然平稳随机信号本身是不确定的,但它的相关函数是确定的,可以利用快速变换算法来计算。相关函数的傅里叶变换或Z变换表示随机信号的功率谱密度函数,简称为功率谱。功率谱是描述随机信号基本特征的重要参数,而功率谱估值是按照实际观测的有限数据估计得到的,它必然与真实的功率谱值有差别。为了减小谱分析偏差和提高谱分辨率,产生了多种谱估计方法。 在非平稳随机信号处理中,非平稳随机过程的特征函数一般是随时间而变化的,不能再用时间平均代替集平均,只能用组成过程的样本函数集的瞬时平均来描述其特性。因而求得的功率谱是随时间变化的谱。这种时变功率谱的计算方法仍在研究中。卡尔曼滤波和最大熵法是处理非平稳随机信号的有用方法。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条