1) Wiener probability space
Wiener概率空间
1.
The purpose of this paper is to study some limit theorems for m-valued countable nonhomogeneous two-order Markov Chains in Wiener probability space by using an analytic method, which was invented by Professor Liu Wen.
利用刘文教授提出的分析方法在Wiener概率空间中研究m值可列非齐次二重马氏链的一些极限定理。
2) The Wiener probability space
Wiener概率空间
3) Wiener space
Wiener空间
1.
Average error of quasi-Grünwald interpolation on the Wiener space;
Wiener空间中拟Grünwald插值的平均误差
2.
In this paper, we obtain the weakly asymptotic order for the average error of the Egervary -Turan Hermite-Fejer interpolation based on the extended zeros of Tchebycheff polynomials of the first kind in the Wiener space.
得到了以扩充的第一类Chebyshev多项式的零点为插值结点组的Egervary-Turan修正Hermite-Fejer插值多项式在Wiener空间下的平均误差的弱渐进阶。
3.
The weakly asymptoticly order for the average error of the Hermite-Fejer interpolation polynomials based on the zeros of Tchebycheff polynomials of the second kind in the Wiener space is obtained.
得到了以第二类Tchebycheff多项式的零点为插值结点组的Hermite-Fejer插值多项式在Wiener空间下的平均误差的弱渐进阶。
4) probability space
概率空间
1.
Continuity of monotonic event sequence in probability space
概率空间中单调事件序列的连续性
2.
In this paper ,two concepts of probability space Ⅰand space Ⅱon extension set are pro posed and general properties of space Ⅰand space Ⅱare discussed .
提出了Ⅰ型和Ⅱ型可拓概率空间两个概念,并讨论了它们的一般性质。
3.
The function of the diffusion layer of block cipher is closely related to the properties of its probability space.
分组密码线性层的扩散作用与其概率空间的性质密不可分,本文从分析可逆线性变换与可逆矩阵的关系出发,研究了在一类特定条件下n×n可逆矩阵的计数问题,并将所得结论应用于可逆线性变换概率空间的性质研究中。
5) abstract Wiener space
抽象Wiener空间
6) spatial probability surface
空间概率面
补充资料:概率空间
概率空间
probability space
概率空间I邵加减tySI甲理;皿po,功ocmoe npoc印a-Hc卿],概率场(probability fie】d) 由非空集合O,Q的子集类形成的。代数(即对集合论中的可数次运算封闭)了和在了上的概率测度(pro恤hility 11ras眠)P组成的三元组(0,了,尸).概率空间的概念是由A.H.KoJ’I加Kro侧犯引进的(【1」).Q中的点称为基本事件(elel贺ntary events),而Q本身看作基本事件空间(sPaee ofe】~n扭ry events)或样本空间(samPle sPace).Q的属于了的子集是(随机)事件(e记nts).关于概率空间的研究常常限制在完全概率空间上,即满足要求:B‘叭ACB,尸(B)二O蕴含AC了.如果(Q,叭尸)是任意概率空间,形如AUN的子集类,其中A任了且NCM,对某一满足户(M)=0的M任武形成一个a代数牙,用公式P(AUN)=P(A)定义的‘矛上的函数尸是牙上的概率测度.空间(Q,牙,P)是完全的,并且称为(Q,了,尸)的完全化(田mPletion).通常人们可以把注意力限制在完满概率空间(peri改tpro恤bilityspa。万)上,这种空间使得对任意实了可测函数f和使得f一’(E)6丫的实直线上的任意集合E,存在一BOrel集B使得B CE且P(f一’(E))-尸(/一’(B)).在一般模式中,某些“病态”结果(与条件概率的存在性,独立随机变量的定义等相联系的),不会发生在完满概率空间中,满足某些给定的特殊要求的概率空间的存在性问题,在许多情形下不是平凡的.这种类型的一个结果是重要的KoJ叭4(犷ol不)B相容性定理(Koin刃即rovco招is记n(W thcon改n):设对集合T的元素的每一有序组t,,…,t。,对应着Euclide空间R”的B心rel集上的一个概率测度p:.,,‘.,并满足以下相容性条件: l)尸‘二r,(I,.,,,)=p,二,,,.,(毛二二,,。.)对所有的(y:,…,y。)ER”成立,其中I,.,.,。,。={x=(x,,二,x。):x;簇夕,,i=l,…,。}且:、,二,气是数l,二,。的任一重新排列; 2)p,…。。(I,,j。一二)=p‘.,.:一,(I,…,二_.),则在乘积空间R了二{x二{x;}:所T,xr〔R’}的子集所构成的,使一切坐标函数t(x)=x:为可测的最小。代数了上存在一个概率测度尸,使得对T的任意有限子集t:,二,t。和任意n维Borel集B下述等式成立: p,二,.(B)=p{x6R了:(r,(x),…,r。(x))‘B}·
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条