1) braach vibratio v
拉削振动
2) vibration drilling
振动钻削
1.
Computer simulation of laminated material vibration drilling;
叠层材料振动钻削的计算机仿真
2.
Ultrasonic vibration drilling of microvoid;
微孔的超声振动钻削技术与工艺效果
3.
A study on the principle of vibration drilling for microvoid;
微小孔振动钻削机理研究
3) vibration machining
振动切削
1.
Features of vibration machining technology and research for its application;
振动切削技术特点及其应用研究
2.
Features of vibration machining technology and its application status;
振动切削技术特点及其应用状况
3.
The main procedure of the vibration machining is reviewed briefly The researehes and achievements in the establishing of mathematic models, testing and practical systems and the essence or mechanisms of the vibration machining are introduced.
简要回顾了振动切削的主要发展过程,综述了国内在振动切削数学模型、试验与实用系统和本质与机理等方面的研究与进展,同时展望了振动切削理论研究及应用技术的发展趋势。
4) vibration grinding
振动磨削
1.
Study on the Mechanism of Material Removal of Ultrasonic Vibration Grinding of Ceramic;
超声振动磨削陶瓷材料高效去除机理研究
2.
The motion model of the contact between abrasive particle and workpiece in two-dimension ultrasonic vibration grinding was analyzed,the maximum cutting depth of a grain were obtained.
基于工件超声振动磨削的单磨粒运动模型,建立超声振动磨削单磨粒最大切削厚度agm ax公式;基于压痕断裂力学,给出硬脆材料超声振动磨削塑性-脆性转变临界条件,进行超声振动磨削与普通磨削对比试验,应用SEM和AFM分析陶瓷磨削表面微观形貌特征,重点研究磨削参数对其塑性-脆性转变特征的影响。
3.
Based on impulse theories and vibration cutting theories,the mathemetical model of work ultrasonic vibration grinding(WUVG) forces was established.
基于冲量理论和振动加工理论,采用叠加原理建立了工件横向施振超声振动磨削力数学模型。
5) vibratory cutting
振动切削
1.
Invention of vibratory cutting and its process characters;
振动切削的创立及其工艺特点
2.
In order to study deeply factors of cutting surface effection in vibratory cutting,the experiment system of the vibration cutting with low frequency is tried and established.
为了深入研究振动切削中各因素对加工表面的影响,建立了低频振动切削实验系统。
3.
It is also revealed that the cutting crack in the vibratory cutting is more liable to generate than that in the conventional cutting process,le.
对振动切削中应力波传播对裂纹的形成、扩展的影响及成屑机理进行理论分析和研究,揭示了振动切削中刀具对工件的作用为应力波影响下的动态冲击,较普通切削更易于萌生起始断裂而成屑;动态应力波对切削裂纹形成的影响及作用是改善切削效果的主要因素。
补充资料:点振子振动和点电极振子振动
分子式:
CAS号:
性质:又称点振子振动和点电极振子振动。振动能量绝大部分集中在点电极范围内,形成“能量封闭”的振动模式。振子电极面远小于压电陶瓷片的总面积,且与厚度有适宜的匹配关系。在交变电场作用下,沿厚度方向产生振动,其振幅随着至电极中心距离的增加,呈指数式衰减。谐振频率与压电陶瓷片的厚度有关。为提高频率通常将压电陶瓷片磨得很薄,有时考虑到压电陶瓷自身强度太低,可用特制的陶瓷片作垫片来防止压电陶瓷片损坏。常用于高频场合。
CAS号:
性质:又称点振子振动和点电极振子振动。振动能量绝大部分集中在点电极范围内,形成“能量封闭”的振动模式。振子电极面远小于压电陶瓷片的总面积,且与厚度有适宜的匹配关系。在交变电场作用下,沿厚度方向产生振动,其振幅随着至电极中心距离的增加,呈指数式衰减。谐振频率与压电陶瓷片的厚度有关。为提高频率通常将压电陶瓷片磨得很薄,有时考虑到压电陶瓷自身强度太低,可用特制的陶瓷片作垫片来防止压电陶瓷片损坏。常用于高频场合。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条