说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 微型游动机器人
1)  micro swimming robot
微型游动机器人
1.
In on-line position locating and speed probing for wireless in-pipe micro swimming robot in term of non-contact, laser apparatus is adopted in lab to locate micro in-pipe robot as to form close-up control, however online inspection cannot be realized yet.
管内无缆微型游动机器人的位置和速度的非接触式检测一般采用激光测距仪定位微型机器人构成闭环控制 ,该方法还没有实现在线检测 。
2)  Micro mobile robot
微型移动机器人
1.
To facilitate automatic operation in narrow and unstructured environments,autonomous micro mobile robot is highly demanded,however,in practice,miniaturization of robot dimension limits development of individual intelligence of each robot.
针对狭小非结构环境下的自主作业任务,研制微型移动机器人已经成为特种机器人的研究热点,但机器人的微型化限制了机器人个体智能的提高,因此,通过多个机器人之间相互合作的集群智能来弥补个体智能不足的研究途径具有突出的优势。
3)  peristaltic minirobot
微型蠕动机器人
4)  swimming micro-robot
微型泳动机器人
1.
As a kind of medical robots, the swimming micro-robot in human body has a significant potential foreground.
体内微型泳动机器人作为医用机器人的一种,具有巨大的潜在应用前景。
5)  micro robot
微型机器人
1.
Design of the image acquisition and wireless transmission branch system of wireless micro robotic endoscope system;
无线微型机器人肠道内窥镜系统中图像采集与无线传输子系统的设计
2.
Motion mechanism and gait planning of a wheeled micro robot;
轮式微型机器人运动机理与步态规划(英文)
3.
A pair of functionally gradient piezo electric cantilevers was used to fabricate a microgripper, which is used as the micromanipulator of micro robot operating system.
利用梯度功能压电执行器设计和制作了双悬臂梁结构的微夹钳 ,用作微型机器人操作系统的操作手 。
6)  micro-robot
微型机器人
1.
Design of a two-dof planar micro-robot;
一种平面二自由度微型机器人的设计
2.
Study on the driving of Non-invasive Micro-robots with different shapes screws;
不同螺纹下无损伤微型机器人的驱动研究
3.
Development and Research State of Micro-robot at Home and Abroad;
微型机器人的发展和研究现状
补充资料:随机游动


随机游动
random walk

  【补注】对物理和生物科学的应用见「A7]及其所引文献.随机游动[爪回.旧”.业;c月y,咖oe6月,明明Hel 一种特殊形式的随机过程(stochastic pl℃0留s),可以解释作描述某一状态空间中的质点在某种随机机制作用下的运动的模型.状态空间通常为d维Euclid空间或在其中的整值格点.随机机制可以是各种各样的;最普通的随机游动由独立随机变量和或M豆匹。链生成.还没有一种被普遍接受的严格的随机游动的定义. 在d二1的情形、最简单的随机游动的轨道用初始位置S。=O及部分和的序列 又一X!十…十戈,”二1,2,…,(l)来描述,其中戈是具有砚叮幻曲i分布: 尸(戈=l)“P,P(戈=一l)=q=l一P, p任(0,l)的独立随机变量.5。的值可解释作:两个局中人之一在每次博奕中以概率P赢一元钱,以概率1一p输一元钱,在n次博奕后他所赢得的钱.如果博奕由投掷一个无偏的硬币构成,即假定p=1/2(对称游动(syrnr朋咏认么玫),见R沉以皿随机游动(氏rno宜伍份记呱认司k)).假设第一个局中人的初始资本为b,第二个为a,当运动着的质点(具坐标S:,52,…)首次接触到水平a或一b之一时博奕即告结束.在此时刻,局中人之一输光.这就是古典的输光问题,其中边界点a和一b可看作是吸收的(幽orbing). 在排队论(queueir嗯山印卿)的应用中,质点接近边界a和一b的性态可以不同,例如:如果a“的,b=0,则随机质点在时刻。十1的位置由 Z。十,=11捆Lx(0,Z。+戈十、)(2)给定,0处的边界称为反射的(比月州」ng)或阻留的(山想垃访g).质点在边界邻域的性态也存在其他的可能性. 如果a=的,就得到具有一个边界的随机游动(歇叱。m城业认欣h one boUnda卿).如果a=b=QO,则就得到无限制的随机游动(ulln治trict记m耐。m狱幻k).通常使用离散MaPx加链的机制,特别是通过研究相应的有限差分方程来研究随机游动.例如,在输光问题中,设“*是第一个局中人初始资本等于k时输光的概率,0簇k簇a+b,两个局中人的总资本是a+b.则根据首次跳跃处的全概率公式,推导出u;满足方程 uk=Pu*,1+qu*一1,0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条