1) blending surface
曲面拼接
1.
The design precision and quality of blending surface were restricted by expression of surface and .
由于B样条曲面具有良好的整体控制性能,是有理B样条方法的基础,本文随后探讨了B样条曲面拼接中的常用算法,得出只要满足两曲面沿公共连接线处处具有公共的切平面或公共的曲面法线,就可推导出G~1连续拼接的条件,推广后可达到G~2连续,即可满足A级曲面的标准。
2) curve surface-splicing
曲面拼接
1.
Based on the understanding of the STL file format and taking the case of the application of STL file format in the curve surface-splicing during the reverse engineering process,the advantages and disadvantages were set forth in detail.
在了解STL文件格式的基础上,以STL文件格式在反求工程中的曲面拼接的应用为例,阐述STL文件格式在反求造型中的优缺点。
3) Blending Surfaces
曲面拼接
1.
The Application of Chinese Remainder Theorem for Blending Surfaces;
中国剩余定理在曲面拼接中的应用
4) blending surface
拼接曲面
1.
The existence conditions of cubic and quartic blending surfaces were given,i.
为了扩大现有曲面拼接计算方法的应用范围,在不考虑二次控制曲面存在条件的情况下,将3个二次曲面沿平面接口的拼接曲面的存在性转化为求相应的齐次线性方程组非零解的存在性问题。
2.
The existence condition and the computing method of quadratic blending surfaces are presented.
用计算机代数方法 ,研究了三个二次曲面的光滑拼接 ,给出了二次拼接曲面存在的判别方法 ,及计算拼接曲面的Matlab程序。
3.
In this paper,we prove that for two cylinders with axes in different planes,the GC~1 blending surface doesn′t exist between the sections in the clipping planes at some certain cases.
证明了两个轴线异面的圆柱面在与轴线斜交的平行平面截口处若干种情形不存在GC1拼接曲面。
5) GC~1 blending surface
GC1拼接曲面
6) Quadric surface joining
二次曲面拼接
补充资料:单侧曲面与双侧曲面
单侧曲面与双侧曲面
one - sided and two - sided surfaces
单侧曲面与双侧曲面(帐.幼山月.砚加。一浦山吐,叮肠。污;o月.oc”POHHNe.刀”yc功PollH“e no.epxltocT.) 以不同的方式放置于外围空间中的两类曲面(单侧放置(one一sid留泌ition)和双侧放置(t场U.si山刘p沈i石on)).例如,柱面是双侧曲面,而M施如带(M冬biuss州P)是单侧曲面.这两类曲面之间的特征区别是,柱面的边界由两条曲线组成,而M6bi留带的边界是单独的一条曲线.在封闭曲面中,球面(sPhere)和环面(torus)是双侧的,而X】曲1曲面(Kleins班鱼沈)是单侧的.作为双侧放置和单侧放置的例子,可以引用圆周在M6blus带中的嵌人.这样,圆周“(见图)是单侧曲线,而圆周刀是双侧曲线(一般说来,任何无定向道路(d留丽enii飞path)单侧地落在曲面中). 霍重)薰黔 更确切地说,单侧曲面和双侧曲面是以不同的方式嵌人在(维数高过1的)外围空间中的两类流形.双侧性和单侧性与可定向性和不可定向性(见定向(。山nta石on))有关,但是它们不是曲面的内在性质,而依赖于外围空间.例如,存在可定向的双侧曲面:梦C=夕,护C=R,;不可定向的双侧曲面:’R尸ZxOCR PZ xs,;可定向的单侧曲面:尹二S,xs,c= RPZx夕;不可定向的单侧曲面:R尸,CR尸(这里,梦是球面,产是环面,R尸“是射影平面,RP3是射影空间,夕是R尸上迷失方向的路径). 在可定向空间(例如,R”)中一个超曲面是可定向的,当且仅当它是双侧的. 假定一个法向量沿着浸人在某个空间中的光滑曲面上一条闭曲线移动,并保持它是曲面的法向量.如果不管如何选择闭曲线,当回到出发点时法向量的指向与它原来的指向总是一致的,则称该曲面是双侧的(t认。一sid记);反之,则称它为单侧的(o优一51山沮).更一般地,曲面n是双侧放置的当且仅当它的法丛(nonl以1 bundk)是平凡的(在这个丛里存在一个非零截面).反之,单侧曲面的法丛是非平凡的:在n上存在一条曲线使得法丛在它上面的限制是一条M6bius常. 空间N”中每一个(超)曲面M”一’在局部上都把尸分成两部分,即任意一点x任M月一’C=N“有一个邻域U cN,使得U由两个分支U’和U“组成,而U门M“一’属于它们的公共边界.在另一方面,M”一’在N”中的充分小邻域(如果M在N中是封闭的)或者是一个分支,或者有两个分支,其边界包含M在内.在第一种情形,(超)曲面M”一’也称为单侧的(one-51山沮),在第二种情形,称为双侧的(腼、51山过).因而,虽然曲面在局部上是双侧的,但是在大范围上它可能是单侧的.反过来,双侧曲面未必分隔它在空间中的邻域. 对于落在N“+’中的双侧曲面M”,任意一条封闭曲线:与M”在N”十’中的相交指数(同调论中的)(运如加叨。n in(七x(in holnofogy))满足方程(:,M”)二Olllod 2.但是,如果M”是单侧的,则对某条曲线:日丫+’(:,M·)笋0.这个事实(与法向量的移动及邻域的分隔一起)也能取作单侧性和双侧性的定义.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条