说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Walsh-Haar矩阵
1)  Walsh-Haar matrix
Walsh-Haar矩阵
2)  Walsh-Hadamard matrix
Walsh-Hadamard矩阵
3)  Walsh matrix
Walsh矩阵
1.
Considering the mutual interference between laser beams when laser target designators point multiple targets,a scheme for laser beam coding is presented based on Walsh matrix.
针对激光目标指示器在进行多目标指示时,激光束之间有相互干扰的缺点,提出了一种基于Walsh矩阵的多目标指示激光束编码方案。
4)  Haar Operational Matrix of Integration
Haar积分算子矩阵
5)  Walsh-Haar type transform
Walsh-Haar类变换
1.
A new algorithm for image edge detection which is based on Walsh-Haar type transform is presented in this paper.
论文提出了一种新的基于Walsh-Haar类变换的图像边缘检测方法。
6)  operational matrix of Haar wavelets
Haar小波微分运算矩阵
补充资料:Haar测度


Haar测度
Haar measure

  l如盯测度「H‘犷.旋,,此;xaa砷M明J 设G为局部紧群,M为由G的一切紧子集族产生的口环,M上的非零正测度(nleasule)拼称为Haar测度是指它在G的每个紧子集上取有限值并且满足下列两条件之一: (i)左不变条件(co戚由nofleft一in~e)·对一切E6M,g〔G,有尸(E)”风gE); (il)布不孪参份(印ndition of right一~).对一切E任M,g任G,有产(E)‘拌(均);其中gE={gx:x任E},Ea={xg:xeE}.因此,人们相应地说左不变Haar测度(left·示调6如tH斑犷n长刁-s二)或有不孪H山犷掣摩〔砂‘一加一‘H自ar“-suxe).每个H班址测度是#平则的(。一比g田ar),即对一切E任M, “阁一妙伊因二Kc=E,K为紧集}. 左不变(以及右不变)H出叮测度是存在的且是唯一的,确切到一个正因子不计;这是AH压叮(【l])建立的(在G是可分群的假定下). 若f为G上具紧支集的连续函数,则f在G上关于左不变Haar测度可积,且相应的积分为左不变的(见不变积分(加锥由扭访噢四tion)),即 Jfto)即。一夕(00。如嘛瓶“G· GG右不变H玉汀测度有类似的性质.整个群G的11%26汀测度为有限当且仅当G是紧的. 若产为G上左不变H斑叮测度,则对每个g。〔G,下列等式成立: 夕、1)d;@一△帅介ta)d。、 GG其中△为由G到正实数乘群R十的连续同态,.它不依赖于在G上有紧支集的连续函数f的选择.同态么称为G的模(洲对山出);测度△(g一’)咖(刃是G上右不变Haar测度.若△(a)三1,则G称为乡攀单(u灿侧月u.址);此时左不变H出叮测度也是右不变Haar测度并称为(双边)不变的((t认。,s汕司)示调6切t).特别,么模群的例子有:紧群,离散群,月阅局部紧群,连通半单Lie群以及幂零Lie群等.群的么模性等价于下列条件:G上每个左不变Haar测度。也是禅不孪的(访凭巧elyin论巧ant),即对一切E〔M,群(E一’)=产(E). 若G为块群(Liegro叩),则关于G上左不变(右不变)Haar测度的积分用式子 0ff(x)、(x)一枷:八…八、 GG定义,其中呜是G上线性无关的左不变(右不变)一阶微分形式(见加如州牙~C田七口形式(Ma切rer~〔滋由nform))且n=山mG.Lie群G的模用式子 △(x)二!detAd(x)},x‘G定义,其中Ad为伴随表示(参看I允群的伴随表示(殉。int肥p咪n扭石。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条