1) moving least squares
滑动最小二乘
1.
Solving seismic wave equation by moving least squares(MLS) method;
滑动最小二乘法求解地震波波动方程
2.
A Plate_bending element_free method, which is based on the moving least squares (MLS) interpolants, is studied in this paper.
针对基于滑动最小二乘法的板弯曲无单元法进行研究。
2) moving least square method
滑动最小二乘法
1.
The application of moving least square method to simulation of in-situ stresses with large depth is presented in this paper.
介绍了滑动最小二乘法对地应力场的模拟分析与现场应用。
2.
The study and application in engineering of EFGM to three-dimensional problems is presented based on moving least square method(MLSM).
无单元法基于滑动最小二乘法建立在全域高阶连续可导的插值函数,只需结点信息即可建立离散模型,非常适合于求解岩土工程中复杂边界条件的边值问题。
3.
The process of using the moving least square method to constructing trial function which was used in the method of Weighted Residuals was presented.
给出了利用滑动最小二乘法构造加权残值法中试函数的方法,对试函数中的基函数以及权函数的选取提出了建议;该试函数适用于任何定解问题,采用配点法求出试函数中的系数,进而可得到定解问题的近似解;利用该试函数对简支板的挠曲、悬臂梁的弯曲、以及中心具有小圆孔的大板的均匀拉伸等三个例子进行了数值计算,并与理论结果进行对比;同时还检验了该法的精度对结点数、配点数、以及结点影响半径的依赖情况,结果表明,该试函数适用于多种边值问题,且精度高。
3) moving least squares method
滑动最小二乘法
1.
The application of moving least squares method interpolant to weighted residuals;
滑动最小二乘法在加权残值法中的应用
2.
Based on the moving least squares method and the finite difference scheme, a new element\|free method is proposed and used to simulate horizontal two dimension river flow with complicated boundary.
本文通过引入滑动最小二乘法和有限差分法 ,得到水动力学无单元计算法并应用于复杂边界的河道水流运动方程。
3.
Element free method(EFM), which is based on moving least squares method,is a gridless method to treat boundary value problems in geotechnique engineering such as dam stability analysis, slope analysis and progressive crack growth.
它的理论基础是滑动最小二乘法。
5) moving least-square (MLS)
最小滑动二乘法
6) the moving-weighted least-square(MWLS) method
滑动加权最小二乘法
补充资料:非线性最小二乘拟合
分子式:
CAS号:
性质:用最小二乘法拟合非线性方程。有些变量之间的非线性模型,通过变量变换可以化为线性模型,此称为外在线性。而有些变量之间的非线性模型,通过变量变换不能化为线性模型,通称为内在非线性。对于非线性模型y=f(ξ,θ)+ε,其残差平方和。S(θ)是θ的函数,当模型关于θ是非线性的,正规方程关于θ也是非线性的。基于使残差平方和s(θ)达到极小的原理求出θ的估计值,拟合非线性回归方程。
CAS号:
性质:用最小二乘法拟合非线性方程。有些变量之间的非线性模型,通过变量变换可以化为线性模型,此称为外在线性。而有些变量之间的非线性模型,通过变量变换不能化为线性模型,通称为内在非线性。对于非线性模型y=f(ξ,θ)+ε,其残差平方和。S(θ)是θ的函数,当模型关于θ是非线性的,正规方程关于θ也是非线性的。基于使残差平方和s(θ)达到极小的原理求出θ的估计值,拟合非线性回归方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条