1) total curvature
全曲率
1.
On analytic and algebraic solutions to mean curvature and total curvature;
中曲率与全曲率的解法研究
2.
Some geometric data of ellipse in hyperbolic space are considered,such as set inclusion,arc length,geodesic curvature,curvature,area and total curvature.
在双曲空间中,考察椭圆的包含关系,对弧长元素、测地曲率、曲率、面积及全曲率等几何量做出细致考察。
2) holomorphic curvature
全纯曲率
1.
Moreover F_εis strongly K(?)hler-Finsler whenα,βare K(?)hler metrics and also we obtain the explicit formula of its holomorphic curvature.
设(M_1,α),(M_2,β)均为Hermitian流形,本文证明了积流形M_1×M_2上的复Szabó度量F_ε是Berwald度量,且当α,β为K(?)hler度量时,F_ε是强Kahler-Finsler度量,此外本文还给出了F_ε的全纯曲率的显式表达式。
3) holomorphic sectional curvature
全纯截曲率
1.
The complete Einstein-Khler metric and the holomorphic sectional curvature on Cartan-Hartogs domain of the third type;
第三类超Cartan域的完备Einstein-Khler度量及其全纯截曲率
2.
The complete Einstein-Khler metric on Cartan-Hartogs domain of the second type and holomorphic sectional curvature;
第二类超Cartan域的完备Einstein-Khler度量及其全纯截曲率
3.
In this paper,the explicit form of Einstein-Khler metric of Hua construction of the second-type HCⅡ(p(p+1)/4+1,p+1/2) is proposed,and the holomorphic sectional curvature under this metric is given.
给出一类特殊第二类华结构HCⅡp((p+1)/4+1,p+1/2)的Einstein-Khler度量的显表达式,并计算了在此度量下的全纯截曲率。
4) completely equal curvature
全平均曲率
1.
The completely equal curvature of ellipse torus on closed curve in plane;
平面闭曲线上扁形椭圆环面的全平均曲率——Willmore猜想的一个例证
2.
The completely equal curvature of tubular surface on Viviani s Curve supports2π2<∫∫M2H2dA<5π2.
Willmore猜想的一个推广,说明Viviani曲线上管状曲面的全平均曲率满足22π<∫∫M2H2dA<52π。
5) finite total curvature
有限全曲率
6) totall absolute curvature
绝对全曲率
补充资料:全受全归
1.语出《礼记.祭义》:"父母全而生之,子全而归之,可谓孝矣。不亏其体,不辱其身,可谓全矣。"封建礼教认为人的形体来自父母,应当以完全无亏的身体,还之父母。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条