1) holomorphic sectional curvature
全纯截面曲率
2) holomorphic sectional curvature
全纯截曲率
1.
The complete Einstein-Khler metric and the holomorphic sectional curvature on Cartan-Hartogs domain of the third type;
第三类超Cartan域的完备Einstein-Khler度量及其全纯截曲率
2.
The complete Einstein-Khler metric on Cartan-Hartogs domain of the second type and holomorphic sectional curvature;
第二类超Cartan域的完备Einstein-Khler度量及其全纯截曲率
3.
In this paper,the explicit form of Einstein-Khler metric of Hua construction of the second-type HCⅡ(p(p+1)/4+1,p+1/2) is proposed,and the holomorphic sectional curvature under this metric is given.
给出一类特殊第二类华结构HCⅡp((p+1)/4+1,p+1/2)的Einstein-Khler度量的显表达式,并计算了在此度量下的全纯截曲率。
3) Totally real bisectional curvature
全实双截面曲率
4) holomorphic curvature
全纯曲率
1.
Moreover F_εis strongly K(?)hler-Finsler whenα,βare K(?)hler metrics and also we obtain the explicit formula of its holomorphic curvature.
设(M_1,α),(M_2,β)均为Hermitian流形,本文证明了积流形M_1×M_2上的复Szabó度量F_ε是Berwald度量,且当α,β为K(?)hler度量时,F_ε是强Kahler-Finsler度量,此外本文还给出了F_ε的全纯曲率的显式表达式。
5) spanning holomorphic cross-section
全纯截面张
1.
In this paper,we define operations on the set of cross-sections dominated by a spanning holomorphic cross-section of ET,by which the set is shown to be an algebra.
文章中在被全纯截面张控制的截面的集合中定义运算,使之成为一代数。
2.
In this paper, by the tools of reproducing kernel theory and functions of several complex variables, we show that each A∈A_m(Ω) possesses spanning holomorphic cross-section ifΩi.
本文利用再生核理论与多复变函数的工具,证明了当A∈(?)~n(H)∩A_m(Ω)而且Ω是C~n中的多元柱体时,A所对应的全纯向量丛E_A都具有全纯截面张。
6) sectional curvature
截面曲率
1.
On pinching problem of sectional curvature on minimal submanifolds in a symmetric space;
局部对称黎曼流形中极小子流形的截面曲率的pinching问题
2.
Let Mmbe a compact submanifold with positive sectional curvature of a space form Nn(c).
设Mm是空间形式Nn(c)中具有正截面曲率的紧致子流形,证明了如果n-m≥2,Mm的平均曲率向量关于法联络平行且不为零,则在Mm中不存在稳定积分流,且Mm的同调群消没。
3.
By using an inequality relation between a scalar curvature and the length of the second fundamental form,it is proved that sectional curvatures of a submanifold must be nonnegative (or positive).
利用数量曲率与第二基本形式长度之间的一个不等式关系,证明了其子流形的截面曲率一定非负(或者为正),并将此应用到紧致子流形上,得到一些结果。
补充资料:截面曲率
截面曲率
sectional curvature
截面曲率汇,犯柱佣目~撅;ee料。o。”曲冲加朋3.a],亦称截曲率 可微R正仃以nn流形M在一点p沿一个二维平面“的方向(沿在P任M确定“的二重向量的方向)的RIOm.”n曲率(Rlenlannlan cun忍tLu℃). JI .A.C朋opoa撰[补注]
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条