1) energy-momentum tensor
能量动量张量
1.
Two potential dual theory of EM field energy-momentum tensor;
电磁场能量动量张量的双矢势对偶理论
2) energy-momentum tensor
能动张量
1.
The renormalized energy-momentum tensor and Casimir effect of Dirac field in two-dimensional static spacetime;
二维静态时空中Dirac场的重正化能动张量和Casimir效应
3) energy-momentum pseudo-tensor
能量动量赝张量
1.
Using the expression of energy-momentum pseudo-tensor of cylindrical gravitational waves of both the polarized states,the authors got the expression of the energy and momentum after a great lot of calculations.
利用Rosen-virbhadra(R-V)给出的引力场能量动量赝张量的一般表达式,计算得到了双极化态柱面引力波能量动量的具体形式,并讨论了其正定性问题与渐进行为。
4) energy-momentum tensor
能量-动量张量
1.
A study about the energy-momentum tensor of pure gravitational field part of matter;
物质纯重力场部分的能量-动量张量研究
2.
Based on two-fluid model of superfluid,an energy-momentum tensor has been discovered,and the relativistic equations of superfluid dynamics have also been derived according to the laws of conservation of energy and momentum for the physical system.
以超流体的二流体模型为基础,根据超流的微观理论,找到了一个能量-动量张量,并通过能量和动量守恒定律导出了相对论性超流体的宏观动力学方程。
5) energymomentum tensor
能量动量张量
6) energy-momentum pseudotensor
能量-动量赝张量
1.
In his book The Classical Theory of Field,Landau rigorously deduced the expression of energy-momentum pseudotensor of the gravitational field as,but he failed to give the concrete deductive process of this expression.
纵观各种表述,只有Landau提出的能量-动量赝张量表示才是最能反映等效原理要求的表述。
补充资料:能量原理与能量法
能量原理与能量法
energy principles and energy methods
nengliang yuanli yu nengliangfa能量原理与能量法(energy prineiple、and energy methods)根据能量来分析结构在外来作用下的反应的力学原理和方法。能量原理是力学中的机械能守恒定律或虚功原理在变形固体力学中的具体体现,它是能量法的理论基础,也是用能量法解题时必须满足的条件。这些条件是与平衡条件或位移协调条件等价的。能量原理和能量法与先进的计算技术相结合,显示出优越性。 应变能、余能和势能在单向应力状态下,弹性体的应变能密度(单位体积的应变能)怂可用一下式计算: ,‘一站O。凌它相当于图l中用阴影线表示的面积。另外,在单向应力状态下的余能(应力能)密度万可用下式计算: 万一俨:而它相当于图2中阴影部分的面积。由图1.21;r知 2,+万=JO‘’)。‘。~J茸祥一言一一£ d£ 图J应变能密度图2余能密度图3线弹性情尤下的应变能密度与余能密度由图3可知,线弹性体的余能密度与应变能密度在数值上相等。在简单应力状态下的应变能密度或余能密度经过总加后,可得到复杂应力状态下的应变能密度或余能密度。把它们在整个弹性体的体积内积分就得出整个弹性体的应变能或余能。对于线弹性体,应变能或余能可表示为位移或应力(内力)的二次式。弹性体的应变能与外力势能的总和称为总势能。外力势能在数值上等于各个外力在施力点位移上所做功的总和冠以负号。 能量原理在给定的外力作用下,在满足位移边界条件的所有各组位移中.实际存在的一组位移应使总势能为极值。对于稳定平衡状态,这个极值是极小值。因此,上述能量原理称为极小势能原理。它等价于平衡条件(含应力边界条件)。在满足平衡条件(含应力边界条件)的所有各组应力(内力)中,实际存在的一组应力‘内力)应使弹性体的余能为极值。对于稳定平衡状态,这个极值是极小值。因此,这个能量原理称为极小余能原理。它等价于位移协调条件。 上述两个能量原理实际上就是数学中求泛函极值的变分原理,应变能和余能分别是以位移或应力(内力夕为自变函数的泛函。所以能量原理也称变分原理,是工程力学的电要组成部分。在变分原理中,位移的变分就是虚位移,应力(内力)的变分就是虚应力(虚力)。因此,能量原理中的极小势能原理又相当于虚位移原理,极小余能原理又相当于虚应力(虚力)原理。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条