1) homogeneous boundary
齐次边界
1.
The global existence and finite blow-up condition of the solution to the reaction-diffusion system was discussed for the homogeneous boundary condition by construction of solutions to the nonlinear diffusion equations.
研究了由3个非线性扩散方程通过非线性反应项耦合而得到的一类反应扩散方程组,并运用构造上下解的方法讨论了这类方程组的齐次边界问题的整体存在和有限爆破条件。
2) nonhomogeneous boundary
非齐次边界
1.
The method is convenient to be used, especially to nonhomogeneous equations and nonhomogeneous boundary value problem.
用微分算子法给出了线性扩散方程和波动方程的通解及初值以及边值相关问题的算子解,特别是对非齐次方程和非齐次边界问题处理尤其简捷适用。
3) Marginal homogeneity
边界齐次性
4) non-homogeneous boundary conditions
非齐次边界条件
1.
We study the existence of a class of nonlinear elliptic equations with non-homogeneous boundary conditions by using variational methods for the various cases that λ,μ∈R and 1<p,q<2N/(N-2).
对于一类非齐次边界条件的非线性椭圆方程,应用变分方法研究了参数λ,μ∈R以及实数p,q在1到2N/(N-2)范围内此类方程的可解性,得到了一些新的结果。
2.
By using the upper and lower solutions method,the existence of solutions was studied for a type of second-order two-points boundary value problems with p-Laplacian operator under non-homogeneous boundary conditions.
研究了一类具p-Laplace算子的二阶非线性常微分方程在非齐次边界条件下的两点边值问题。
5) unhomogeneous boundary condition
非齐次边界条件
1.
A homogeneous function style in the problem of sure resolution of unhomogeneous boundary condition;
非齐次边界条件定解问题的一种齐次化函数形式
2.
In this paper, first, the unified form of W (x,t) is presented on the condition of linear unhomogeneous boundary condition under stable condition.
从稳定条件下的线性非齐次边界条件出发,给出了w(x,t)的统一形式,进而将其推广到非稳定条件下的非齐次边界条件,得到w(x,t)的一般的结果。
6) homogeneous boundary condition
齐次边界条件
1.
The vibration of an elastic rod with a concentrated mass attached on one end and another end subject to a homogeneous boundary condition is discussed by using of the method of Laplace transformation.
用Laplace变换法求解了一端为齐次边界条件,另一端系有集中质量的弹性杆的纵振动问题,推广了相关文献的结果。
2.
In this paper, Legendre and Chebyshev pseudospectral methods for the generalized regularized long wave equations with homogeneous boundary condition are considered.
本文考虑了具齐次边界条件的广义对称正则长波方程的Legendre和Chebyshev拟谱方法。
补充资料:二阶线性齐次微分方程
二阶线性微分方程的一般形式为
ay"+by'+cy=f(1)
其中系数abc及f是自变量x的函数或是常数。函数f称为函数的自由项。若f≡0,则方程(1)变为
ay"+by'+cy=0(2)
称为二阶线性齐次微分方程,而方程(1)称为二阶线性非齐次微分方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条