1) strong totol coloring
强全着色
2) vertex strong total coloring
点强全着色
1.
A proper k-total coloring σ of graph G(V,E) is called a k-vertex strong total coloring of G(V,E) if and only if for v∈V(G),the elements in N[v] are colored with different colors,where N[v]={u|vu∈E(G)}∪{v};and χvsT(G)=min{k|there is a k-vertex strong total coloring of G} is called the vertex strong total chromatic number of G.
图G(V,E)的一正常k-全着色σ称为G(V,E)的一个k-点强全着色,当且仅当v∈V(G),N[v]中的元素着不同颜色,其中N[v]={u|vu∈E(G)}∪{v}。
2.
A proper k-total coloring σ of graph G(V,E)is called a k-vertex strong total coloring of G(V,E)if and only if for ν∈V(G),the elements in N[ν]are colored with different colors,where N[ν]={u|νu∈E(G)}∪{ν};and χ~(νs)_(_T)(G)=min{k|there is a k-vertex strong total coloring of G}is called the vertex strong total chromatic number of G.
图G(V,E)的一正常k-全着色σ称为G(V,E)的一个k-点强全着色,当且仅当ν∈V(G),N[ν]中的元素着不同颜色,其中N[ν]={u|νu∈E(G)}∪{ν}。
3) strong edge-coloring
强边着色
1.
In 1985,the famous graph theory expert Erds and Neetil ilconjectured that strong edge-coloring number of a graph is bounded above by 5/4Δ2 when Δ is even and 1/4(5Δ2-2Δ+1) when Δ is odd.
著名图论专家Erds和Neetil对图的强边着色数上界提出了一个猜想:当Δ为偶数时,χ′s(G)≤5/4Δ2;当Δ为奇数时,χ′s(G)≤1/4(5Δ2-2Δ+1),他们给出了当Δ=4的时的最优图。
4) strong vertex rendering
强着色
5) strong edge coloring
强边着色
1.
For a graph G,f is a strong edge coloring if it is proper and any two vertices are incident with different sets of colors.
设 f是图G的一个正常边着色 ,若对G中任意不同的两点u ,v ,着在与u关联的边上的色集和着在与v关联的边上的色集不同 ,则称 f为强边着色。
补充资料:上海益昌薄板有限公司强对流全氢罩式热处理炉
上海益昌薄板有限公司强对流全氢罩式热处理炉
淤“‘负象灵窿曝有限公司‘对‘
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条