1) Dissipated energy fatigue equation
耗散能疲劳方程
2) Fatigue energy consumption
疲劳能耗
3) fatigue equation
疲劳方程
1.
Based on the standard axial conversion of shearing fatigue damaging equivalence principle,it gets the shearing fatigue equation through chute experimental data regression,compares and analyses the effects of old cement concrete pavement adding GSOG-20 asphalt layer and AC-20 asphalt layer to anti-shearing fatigue,and selects the optimum program.
基于剪切疲劳损伤等效原则的标准轴载换算,通过直道试验数据回归得到剪切疲劳方程,对比分析旧水泥混凝土路面加铺GSOG-20沥青材料层与AC-20沥青材料层抗剪切疲劳的效果,选出了优选方案。
2.
The strength development with time,relationships between flexural tensile strength,split strength and compression strength,the relationship between compression strength and porosity,and two types of double logarithm fatigue equation of porous concrete ar.
得出多孔混凝土强度随龄期的发展规律,弯拉强度、劈裂强度与抗压强度的相关关系,抗压强度与空隙率的关系以及2种形式下的双对数疲劳方程;多孔混凝土弯拉弹性模量与弯拉强度,以及抗压弹性模量与轴心抗压强度的关系;多孔混凝土的温缩系数和干缩系数。
3.
By analyzing the indoor flexural fatigue tests of small beams,the paper Concludes that the fatigue life of lean concrete follows the two-parameter Weibull distribution,and establishes two types of fatigue equation under different stress level and equivalent stress level.
通过分析室内小梁弯拉疲劳试验结果,得出贫混凝土的疲劳寿命服从双参数威布尔分布,据此建立了不同应力水平和等效应力水平下两种形式的疲劳方程。
4) Fatigue function
疲劳方程式
5) fatigue expenditure
疲劳损耗
1.
That monitoring the fatigue expenditure of turbine rotor can improve security and flexibility of the unit.
实时监测汽轮机转子疲劳损耗,能提高机组运行的安全性和机动性。
6) fatigue loss
疲劳消耗
1.
A method for computing the remaining service life of civil airport rigid pavement based on fatigue loss is presented in this paper.
根据 Miner定律提出了基于疲劳消耗计算民用机场刚性道面剩余使用寿命的方法。
补充资料:BCS能隙方程(BCSenergygapequation)
BCS能隙方程(BCSenergygapequation)
在通常情况下,BCS理论定义对势
Δ=-V〈ψ(r,↓)ψ(r,↑)〉
有能隙存在时它代表超导能隙,ψ为场算符,在弱耦合条件下(`N(0)V\lt\lt1`)给出的能隙方程为
$1=N(0)Vint_0^{\hbar\omega}(\epsilon^2 \Delta^2(T))^{-1/2}$
$*th[(\epsilon^2 \Delta^2(T))^{1/2}//2k_BT]d\epsilon$
式中N(0)为T=0K时费米面上一种自旋方向的态密度,V为电子间净吸引势的平均强度,$\hbar$和ωD分别是除以2π的普朗克常数和德拜频率,ε是以费米面为零点的电子能量,kB为玻尔兹曼常数。数值计算的Δ(T)与T的关系见下图,它与多数超导金属的实验结果符合甚好。
在T→Tc和T→0K时的近似结果为:
$\Delta(T)=\Delta(0)-(2\pi\Delta(0)k_BT)^{1/2}*e^{-\Delta(0)//k_BT}$
$(T\lt\ltT_c)$
$\Delta(T)=(1.74)\Delta(0)(1-T//T_c)^{1/2}$
$(T_c-T)\lt\ltT_c$
这里
$\Delta(0)=2\hbar\omega_Dexp(-1//N(0)V)$
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条