1) hierarchy of hamiltonians
哈密顿量等级系统
1.
It is shown that generalized supersymmetric formalism can be used to construct a hierarchy of Hamiltonians isospectral to a given potential.
因此,能够利用广义超对称形式,可构造出与已知哈密顿量等能谱的哈密顿量等级系统。
2) hamiltonian system
哈密顿系统
1.
Hopf bifurcation based on a three-dimensional and time-dependent perturbation Hamiltonian system;
基于近哈密顿系统的Hopf分岔
2.
Some results of discrete Hamiltonian systems;
离散哈密顿系统的几个结论
3.
The same distribution of limit cycles in nine perturbed Hamiltonian systems;
9个扰动哈密顿系统的极限环分布(英文)
3) hamiltonian systems
哈密顿系统
1.
Hamiltonian systems modeling and control of a doubly-fed induction machine;
双馈感应电动机的哈密顿系统建模与控制
2.
The existence of the periodic solutions for a class of superquadratic autonomous Hamiltonian systems is proved by using the linking theorem combining with the Maslov index theory.
结合Maslov指标理论,利用环绕定理证明了一类超二次自治哈密顿系统的周期解的存在性,而这类哈密顿系统所对应的作用泛函可能不满足Palais-Smale条件。
3.
A generalized KAM theorem for lower dimensional tori in Hamiltonian systems is obtained, which applies to the case where there are normal frequencies and hyperbolic normal components simultaneously.
本文给出了关于哈密顿系统低维环面的一个推广的KAM定理,它适用于同时存在法向频率和双曲法向分量的情况。
4) Hamilton system
哈密顿系统
1.
The paper draws the locus on the Poincare cross section under different energies in Hamilton system by using tetrava- lent Romberg-Coota method with regular motion equations,indicating that the change occurs in the system from stability to disorder within a small energy range.
运用四阶龙格-库塔法积分含立方非线性的两个自由度哈密顿系统正则运动方程,画出了系统在不同能量下Poincare截面上的轨迹,显示了在一个很小的能量范围内系统发生从稳定到无序的转变。
2.
A lattice Boltzamnn model for the Hamilton system is given.
给出哈密顿系统的格子Boltzmann算法。
5) effective Hamiltonian
等效哈密顿量
1.
Using a recently developed Monte Carlo effective Hamiltonian method,we study the low energy physics of 1+1 dimensional quantum mechanical system V(x)=μ 2x 2+λx 4( here μ 2<0,λ>0),which is similar to Higgs potential in the standard model of unified electroweak theory.
用最近发展起来的蒙特卡罗等效哈密顿量新方法 ,研究了与量子场论中Φ4模型相似的 1 +1维量子力学系统V(x) =μ2 x2 +λx4(其中 μ2 <0 ,λ >0 )的低能物理特性 。
6) Hamiltonian system
哈密尔顿系统
1.
All the physical courses whose dissipative effects are negligible can be expressed as Hamiltonian systems which preserve energy conservation and symplectic geometric structure.
一切耗散效应可以忽略不计的物理过程都可表示成能够保持辛几何结构不变的哈密尔顿系统的形式,它在自然界中具有普适性,也就是说大多数孤子方程都可以表示成哈密尔顿形式。
2.
A Hamiltonian system is introduced in the problem.
引进哈密尔顿系统,通过哈密尔顿二元方程,采用4对对偶变量,对系统中的基础问题进行数学描述,并归纳为临界荷载的特征值和特征解问题。
3.
We discuss the multisymplectic Preissman scheme which is mainly applied to solve multisymplectic Hamiltonian system in the paper.
主要讨论了用于求解多辛哈密尔顿系统的多辛Preissman格式及其简单应用。