1) sequential compact set
列紧集
1.
The extension and the conjunction of continuous mapping and its propertiesz on a sequential compact set;
连续映射的扩张、拼接以及连续映射在列紧集上的性质
2.
In metric space,by means of discussing boundedness of a function on a neighborhood of accumulation points of a sequential compact set S,give a way of judging boundedness of a function on the whole set S.
在度量空间中,通过对函数在一个列紧集S的聚点附近的有界性讨论,给出了函数在整个点集S上有界性的判定方法。
2) weakly relatively compact
弱列紧集
3) fuzzy sequentially compact set
模糊列紧集
1.
Fuzzy sequentially compact set in fuzzy normed space was defined and the relations between fuzzy sequentially compact set and fuzzy total bounded set were studied some properties of topolisical space were generalized to fuzzy topolisical linear space.
在模糊赋范空间中给出了列紧集的概念,并对于模糊列紧集与模糊全有界集之间的关系作了进一步的研究,使得与分明的情况基本上协调起来。
4) w~*-sequential compactness
弱星序列紧(闭)集
5) concentration_compactness principle
集中列紧原理
1.
This paper mainly discusses the bifurcation problem of P_Laplace equations using the concentration_compactness principle which was proposed by Lions.
本文主要利用集中列紧原理的框架,研究P阶Laplace方程特征值问题的分岐情况。
6) compactness
[英][kəm'pæktnis] [美][kəm'pæktnɪs]
列紧
1.
The necessary and sufficient condition of compactness of sets in space C_B(-∞,+∞);
空间C_B(-∞,+∞)中集合列紧性的判别法
2.
In this paper,a judgment method of compactness of sets in space Lp was generalized to space Lp(-∞,+∞) and a necessary and sufficient condition of compactness of sets in space Lp(-∞,+∞) obtained.
把空间Lp[a,b]中集合列紧性的判别法推广到Lp(-∞,+∞)中,得到空间Lp(-∞,+∞)中集合列紧性的一个充要条件。
补充资料:列紧性
列紧性
compactness, countable
列紧性!~padness阴ntahle二~~~‘] 拓扑空间的个性质,即‘亡的梅个无限子集都存聚点.对度摄空间来说,列紧以和紧性(mm PactncsS)两概念相同.列紧性这个性质叮表小为「述形式琦个可数f集都有聚点.以致列紧空间自然称为执)紧的. 与此州关,产‘1一初始紧十{和终紧性两个概念,或更 一般地,基数区间{“l)]中的紧性或!a,b]紧性(【a川一compactness),川表小为二个等价形式:助任何基数为二引a.川的集含对住x都具有完全聚点(com-plete狱u。飞山tlonPo【nt),即具有点泛使对其f毛李叮邻域O,集合O自耐具有和M相同的基数,2)任何闭集的序型为叨任卜之,。。}的全序系统都具有排空交,3)任何基数为m钊u,川的汗覆盖都含有基数
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条