1) uniformly continuous mapping
一致连续映射
1.
In present literature,extension of continuous mapping discussions is discussed on a closed set,extension of uniformly continuous mapping are all confined to En.
现有文献对于连续映射扩张的讨论都基于闭集,对于一致连续映射的扩张都局限于En。
2) Point compact continuous multifunction spaces
点紧致连续映射空间
3) continuous mapping
连续映射
1.
The extension and the conjunction of continuous mapping and its propertiesz on a sequential compact set;
连续映射的扩张、拼接以及连续映射在列紧集上的性质
2.
Two questions on continuous mappings;
关于弱连续映射的两个问题(英文)
3.
A Construction Method of Realizing Continuous Mapping By A Three-Layer Perceptron;
实现连续映射的三层感知器的构造方法
4) continuous map
连续映射
1.
Non-wandering set of continuous map on Y-space
Y-空间上连续映射的非游荡集
2.
It is investigated that the relationship between the asymptotic pseudo orbit tracing property for continuous map f on a compact metric space X and that for the lift map of f on a covering space of X and show that (,) has the asymptotic pseudo orbit tracing property if and only if (X,f) has asymptotic pseudo orbit tracing property.
设X是紧致度量空间,f:X→X是连续映射。
3.
It is shown that H_0(K_0(R)){f:Max(K_0(R))→Z|f is a continuous map},where Max(K_0(R)) is the maximal sprum of R.
设R为交换环,证明了有群同构H0(K0(R)) {f:Max(K0(R))→Z|f是连续映射},其中Max(K0(R))为K0(R)的极大谱空间。
5) continuous mappings
连续映射
1.
in this paper,we have given a necessary and sufficient condition for the limit of netsof continuous mappings .
本文给出了连续映射网的极限保持连续性的一个充分必要条件,推广了3内的一个重要结果并且首次探讨了极限的连续点集的结构。
6) uniformly continuity
一致连续
1.
Some problems about uniformly continuity;
关于函数的一致连续问题
2.
Some sorts of the uniformly continuit function in the infinite interval are given from the definition of the uniformly continuity of function.
从一致连续性的定义出发,给出了无穷区间上一致连续函数的几种类型。
3.
This paper discusses the uniformly continuity of power function y=x~α on respective domain of definition
补充资料:一致连续性
一致连续性
uniform continuity
一致连续性1.血谊m朋侧坛面ty:paBu0MePH明“eupe-poBuoc几1 函数(映射)j:X~Y的一种性质,其中X与Y为度量空间.它要求,对任给正数£》0,有正数石>0使得对满足p(x、,xZ)<占的所有x、,xZeX,均有不等式p(f(x;),f(xZ))<£成立. 如果映射厂X~Y在X上连续,且X为紧统,那么厂在X上一致连续.一致连续映射的合成是一致连续的. 映射的一致连续性在拓扑群上也会发生.例如,设X。C=X,X,Y为拓扑群,映射f:XO~Y称为万致连续的(山五自n川y collt山uous)是指,对Y的单位元的任意邻域U,,存在X的单位元的一个邻域U二,使得对满足x,、于’任u二‘相应地,x厂‘xZ〔矶)的所有;,,xZ任戈,关系式.f(、,)[f(xZ)]一’任U,(相应地,[f(义、)1一’f(‘2)〔U,)均成立. 一致连续性概念已被推广到一致空间(训面皿印ace)上去.【补注l拓扑群上有好几种自然的一致结构;关于它们之间映射一致连续性的上面(含糊的)叙述可以用不同的方法来阐明.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条