1) Benders Decom-
Benders分解可行性定理
2) Benders decomposition
Benders分解
1.
Aiming at the uncertainty of emergency demand scene,a stochastic mixed integers planning model of two stages is put forward and solved using Benders decomposition.
针对需求情景不确定的情况,提出了基于Benders分解的一个两阶段随机混合整数规划模型,并对情景数较小的情况进行了仿真分析。
2.
In this paper, Benders decomposition method, based on Optimal Power Flow (OPF), is proposed to partition the static security constrained ATC problem into a base-case master problem and a series of subproblems relevant to various contingencies.
文中以最优潮流为基础,采用Benders分解方法将考虑静态安全约束的ATC计算问题分解为一个基态主问题和一系列与各预想事故有关的子问题。
3.
ATC evaluation by hierarchical approach based on Benders decomposition is proposed in this paper.
提出采用Benders分解算法分主从2层计算ATC值。
3) benders decomposition
Benders分解法
1.
The Benders decomposition method can divide this large scale, non-linear, mixed-integer stochastic programming problem into two problems: a deterministic multi-objective integer programming master problem and a stochastic, non-linear operation sub-problem.
采用Benders分解法可以将这个高维度、非线性、混合整数随机规划问题分解为主问题和子问题求解:主问题是一个多目标整数规划问题,而子问题则是一个非线性随机问题。
4) Benders decomposition algorithm
Benders分解算法
5) theorem of solvability
可解性定理
1.
The theorem of solvability of the above probplems is obtained.
研究二阶非线性一致椭圆型方程组在多连通区域上的非线性斜微商边值问题 ,给出该问题的可解性定
2.
From this,the theorem of solvability for the RH problems is obtained.
提出2n个未知函数的变态Riemann-Hilbert边值问题,建立了此边值问题解的积分表示式与先验估计,用Schauder不动点定理证明了此边值问题解的存在性,进而导出了满足某些条件下的2n个未知函数的一阶椭圆组的Riemann-Hilbert边值问题的可解性定理。
6) viabilitiy theory
可行性定理
补充资料:可行
行得通;可以实行:方案切实~。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条