|
1) initial stress stiffness matrix
初应力刚度矩阵
1.
To take into account the P-Δ effects of planar beam-column members subjected to varying axial forces,a two-node planar beamcolumn element was proposed,and the elemental initial stress stiffness matrix was derived according to Minimum Potential Principle.
为了考虑平面梁柱构件在变化轴向荷载作用下的P-Δ效应,本文采用二节点平面梁柱单元,根据最小势能原理推导了单元的初应力刚度矩阵,并分别阐述了应用该单元求解结构临界荷载因子及迭代计算荷载-位移反应的方法。
2.
To take into account theP-Δeffects of beam-column members in a planar frame structure subjected to varying axial forces,a three-node planar beam-column element is formulated by adopting three-point interpolation Hermite polynomials as its shape functions,and the elemental linear stiffness matrix and initial stress stiffness matrix are derived according to the minimum potential principle.
为了考虑平面框架结构中梁柱构件在变化轴向荷载作用下的P—Δ效应,采用三节点平面梁柱单元,选用三点插值的Hermite多项式作为其形函数,根据最小势能原理推导了单元线性刚度矩阵和初应力刚度矩阵,并分别阐述了应用该单元求解结构屈曲荷载因子及迭代计算荷载—位移反应的方法。
2) Initial stress stiffness
初应力刚度
3) dynamic stiffness matrix
动力刚度矩阵
1.
The dynamic stiffness matrix of the media and the formula of their response to P-SV waves are derived.
根据波动方程,采用了薄层元素法,推导了平面P-SV波入射时TI层状场地的动力刚度矩阵。
2.
Methods of obtaining foundation dynamic stiffness matrix based on similarity, including cloning algorithm, consistent infinitesimal finite e1ement cel1 method and scaled boundary finite ele- ment method, are illustrated in detail in this paper.
详细论述了基于相似性导出基础动力刚度矩阵的思想,包括克隆算法、无限元方法、一致无穷小有限元法和标度有限元法。
3.
SV wave scattering by fracture fault are presented in frequency domain using indirect boundary element method(IBEM),in which the dynamic stiffness matrix and of soil layer Green function for distributed loads acting on inclined line by Wolf are used.
借助W olf的土层和半空间精确动力刚度矩阵及斜线荷载的格林函数,利用间接边界元法在频域内求解了局部断层场地对SV波的散射,着重分析了破碎带较窄断层两侧围岩动力响应的基本规律,以及场地动力特性对散射的影响。
4) dynamic impedance matrix
动力刚度矩阵
1.
Based on the indirect boundary element method, the Green′s functions and the dynamic impedance matrix in space domain are obtained.
文中根据间接边界元方法,推导了空间域中的格林函数公式,并建立了地基土的动力刚度矩阵;进而在频域内采用子结构法,建立了考虑土-结构动力相互作用的隔震结构的运动方程;通过数值仿真某具有埋置刚性基础的剪切型基础隔震结构的地震反应,分析了地基土的刚度对隔震效果以及结构地震反应的影响,得到了一些有意义的结论。
5) dynamic-stiffness matrix
动力刚度矩阵
1.
Amplification of P waves by flexible space is analyzed by exact dynamic-stiffness matrix of soil and half-space in frequency domain.
利用土层和半空间的精确动力刚度矩阵,在频域内求解并分析了弹性半空间场地对P波的放大效应。
6) stiffness matrix
刚度矩阵
1.
Effect of structural vibration model and stiffness matrix on earthquake response;
结构振动模型和刚度矩阵对地震响应影响研究
2.
Analysis of behaviours of Rayleigh waves by stiffness matrix method;
瑞利波特性刚度矩阵分析方法
3.
Element stiffness matrix and modified coefficients for circular steel tubes with tapered ends;
双锥型圆钢管的单元刚度矩阵及修正系数
补充资料:ANSYS工字梁焊缝初应力例子
建立好模型 ….. /SOLU !* ANTYPE,0 /INPUT,'input','txt', /INPUT,'output1','txt', !* ISFILE,READ,1,txt, ,0 SOLVE ===================== !定义残余应力矩阵 I=1 fy=310e6 !定义单元中心坐标数组,初应力数组 *DIM,EleCenter,ARRAY,NumNode,3,1, , , *DIM,EleIS,ARRAY,NumNode,1,1, , , *DO,I, 1, NumNode,1 !得到单元中心坐标 *GET,EleCenter(I,1,1),ELEM,I,CENT,X *GET,EleCenter(I,2,1),ELEM,I,CENT,Y *GET,EleCenter(I,3,1),ELEM,I,CENT,Z !焊缝位置在X=1.0 到1.05 之间 *IF,EleCenter(I,1,1),GT,1,THEN *IF,EleCenter(I,1,1),LT,1.05,THEN *IF,EleCenter(I,2,1),GT,0.5,THEN !上翼缘初始应力 EleIS(I,1,1)=-20*fy*EleCenter(I,3,1)**2+0.3*fy *endif *IF,EleCenter(I,2,1),LT,0.0,THEN !下翼缘初始应力 EleIS(I,1,1)=-20*fy*EleCenter(I,3,1)**2+0.3*fy *endif !腹板初始应力 *if,EleCenter(I,2,1),GE,0.0,THEN *IF,ELECENTER(I,2,1),LE,0.5,THEN EleIS(I,1,1)=4.076*fy*(EleCenter(I,2,1)-0.5)**2 EleIS(I,1,1)=EleIS(I,1,1)-0.719*fy *IF,EleIS(I,1,1),LT,-0.3*fy,THEN ELeIS(I,1,1)=-0.3*fy *ENDIF *ENDIF *ENDIF *ENDIF *ENDIF *ENDDO =============== !输出应力数值 *CFOPEN,'1','txt',' ' *DO,I,1,3840 !*IF,EleIS(I,1,1),ne,0.,then *VWRITE,'!' (A) *VWRITE,'! Stress for element', (A,F) *VWRITE,'!' (A) *VWRITE,'eis,',I (A,F) P=EleIS(I,1,1) *VWRITE,P,0.,0.,0.,0.,0. (E,E,E,E,E,E) !*ENDIF *ENDDO *CFCLOS
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条
|