1) relative internal potential angle
相对内电势角
1.
Traditional measurement technique of power angle will influence the accuracy of relative internal potential angle because of the errors brought from determining zero crossing of generator terminal voltage.
传统的功角测量方法因机端电压过零整形而引入误差,影响了相对内电势角测量的精度。
2) absolute internal potential angle
绝对内电势角
1.
The definition of absolute internal potential angle is introduced,and a method to measure it and to obtain relative internal potential angle with high accuracy is proposed.
介绍了绝对内电势角的定义,并提出一种测量绝对内电势角,进而获得高精度的相对内电势角的方法。
3) Diagonal dominance
对角优势
1.
The key for designing a multivariable control system using inverse Nyquist arriay method is to achieve diagonal dominance by compensators.
递Nyquist阵列法是一种成功的多变量控制系统频域设计方法,应用该方法的关键是设计预补偿器使多变量系统对角优势化。
2.
This paper introduces a design method of the air pressure-load controlling system of a unit power-generating set with local feedback matrix for implementing diagonal dominance decoupling.
介绍一种带有局部反馈阵实现对角优势解耦的单元机组汽压——负荷控制系统的设计方法。
3.
While maintaining the merits of classical INA(RINA) methodology, this method solves ultimately the stability (robust stability) problem whenthe diagonal dominance (robust diagonal dominance) of the system transfer matrix is violated.
本文通过在逆Nyquist阵列设计中引入小增益递推原理,提出了一种改进的INA(RINA)设计方法,该方法既保持了传统的INA(RINA)设计方法的优点,又解决了当系统的传递函数矩阵的对角优势(鲁棒对角优势)遭到破坏时,系统的稳定性(鲁棒稳定性)问题。
4) relative bearing of the radio station
电台相对方位角
5) electron intrapair correlation energy
电子对内相关能
6) relative potential
相对势
1.
A new method for post-evaluation of a project of rebuilding electric energy measuring devices is proposed using data envelopment analysis(DEA) and relative potential model.
结合数据包络分析(DEA)方法和相对势模型,提出了一种评价多个电能计量装置改造项目综合效益的方法。
补充资料:水星之魅-水内行星和广义相对论
1686年,在哈雷的请求下,牛顿完成了《自然科学的数学原理》。在这部划时代的奠基性巨著中,牛顿阐述了力学的三大定律和万有引力定律。到了19世纪,天文学家已能用牛顿力学准确地计算行星的运动。牛顿力学准确地描述了一颗行星绕太阳转动时的运动规律,我们称之为“二体问题”。如果这时有第三个天体存在,那么这第三个天体对这颗行星的运动就会产生干扰,天文学称其为“摄动”,求解摄动的问题称为“三体问题”或“多体问题”。利用牛顿力学可以精确地计算出受到摄动的行星的运动情况。但是,反过来求解三体问题,即根据受到摄动的行星运动与两体问题的差别来反推第三天体,就相当困难。
1846年,法国巴黎天文台的青年天文学家勒威耶根据天王星的运动,完成了寻找未知行星的出色计算,并将他推测的新行星位置寄给了柏林天文台台长,后者果然在勒威耶预测的位置附近找到了海王星。发现了海王星以后,勒威耶声誉鹊起,以后又担任了巴黎天文台台长,这时他更坚信太阳系内还有新的行星没有被发现,并把目光转向了水星轨道以内。努力并没有白费,他发现水星绕太阳的轨道并不是固定不变的,而是每转一周,椭圆轨道的长轴便会向东偏过一点,这就是所谓的“水星的近日点进动”。水星近日点进动为每100年43",大约每3002年水星的轨道将会转过一圈。
这个发现使勒威耶十分兴奋。按照发现海王星的经验,这就意味着水星轨道内还有一颗未知的行星,他甚至为它取好了名字叫“伍尔坎”,那是罗马神话中的一位天神,也就是希腊神话中的火神“赫维斯托斯”。1859年,法国的一位业余天文学家莱斯卡博特写信告诉他观测到了“火神”的凌日。勒威耶非常高兴,并兴致勃勃地来到莱斯卡博特居住的小镇去会见他。莱斯卡博特是当地的医生兼木匠,他把观测记录刻在木板上,不用时又把它们刨去。令人奇怪的是,勒威耶几乎不加思索便认可了莱斯卡博特的观测,并预测了1877年3月这颗“火神”的凌日时间,然而“火神”却并没有在预计的时间出现。直到当年9月勒威耶去世前,他还念念不忘自己的信念。由于无法解释水星的近日点进动,不少天文学家在勒威耶身后的100年中继续寻找“水内行星”。不过,所有的努力只是竹篮打水,虽然不时传出一些发现水内行星的新闻,然而事后都被一一否定了。
1915年,爱因斯坦发表了广义相对论,那套深奥的数学公式使多数科学家望而却步,似信非信。那么用什么来证明这个理论的正确呢?水星近日点的进动就是当时证明广义相对论正确的一个例子。按照广义相对论导出的引力理论,爱因斯坦得出水星的近日点应当有42"91的进动,这与观测值惊人的一致,从而解决了天文学上长达半个世纪悬而未决的水星近日点进动问题,而水星近日点的进动连同光线弯曲和引力红移成为了当时爱因斯坦广义相对论的三大支柱之一。在这场重大的科学革命过程中,水星扮演了一个光辉的角色。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条