1) algorithm of balance point
平衡点算法
1.
Based on the influence of military strength strategic management to combat effectiveness, this paper presents the model of stability and algorithm of balance point of military strength strategic management.
从兵力的战略管理对战斗力的影响入手,提出了兵力战略管理的稳态模型及其平衡点算法,并对模型的稳定性进行了分析。
2) balance algorithm
平衡算法
1.
We analyzed balance algorithm and selected a load equalizer,put forward a Web access scheme in multi ports environment.
文中指出了多出口环境下的Web访问实际上是广域网环境下单个域名对应多个IP地址的一种特殊形式,通过对平衡算法的分析和负载均衡器的选型,提出了多出口环境下的Web访问方案,解决了学校的实际问题。
3) direct-neighbor load balancing
相邻结点负载平衡算法
1.
Firstly, the direct-neighbor load balancing algorithm and its shortcoming are introduced.
提出的负载平衡算法改变了结点传递的实际负载信息,使修改后的负载信息能体现出结点及其周边结点的负载形势,以此弥补了相邻结点负载平衡算法的不足,并将其应用在嵌入式多处理器系统上。
4) The algorithm for Nash-Cournot equilibrium point
Nash-Cournot平衡点求解算法
5) Equilibrium Point Estimation
平衡点估算
6) equilibrium calculations
平衡计算法
1.
In the present paper,the modeling of mixing-firing of the municipal solid wast and coal(the ratio of MSW to coal was 9) was established by equilibrium calculations.
运用平衡计算法建立了城市生活垃圾焚烧炉模型,并分别对我国6座城市原生垃圾的掺煤燃烧(垃圾与煤的掺烧比为9)进行了模拟计算和特性分析。
补充资料:不动点算法
又称固定点算法。所谓不动点,是指将一个给定的区域A,经某种变换??(x),映射到A时,使得x=??(x)成立的那种点。最早出现的不动点理论是布劳威尔定理(1912):设A为Rn中的一紧致凸集, ??为将A映射到A的一连续函数,则在A中至少存在一点x,使得x=??(x)。其后,角谷静夫于1941年将此定理推广到点到集映射上去。设对每一x∈A ,??(x)为A的一子集。若??(x)具有性质:对A上的任一收敛序列xi→x0,若 yi∈??(xi)且yi→y0,则有y0∈??(x0),如此的??(x)称为在A上半连续,角谷静夫定理:设A为Rn中的一紧致凸集,对于任何x∈A,若??(x)为A的一非空凸集,且??(x)在A上为上半连续,则必存在x∈A,使x∈??(x)。J.P.绍德尔和J.勒雷又将布劳威尔定理推广到巴拿赫空间。
不动点定理在代数方程、微分方程、积分方程、数理经济学等学科中皆有广泛的应用。例如,关于代数方程的基本定理,要证明??(x)=0必有一根,只须证明在适当大的圆│x│≤R 内函数??(x)+x有一不动点即可;在运筹学中,不动点定理的用途至少有二:一为对策论中用来证明非合作对策的平衡点的存在和求出平衡点;一为数学规划中用来寻求数学规划的最优解。对于一个给定的凸规划问题:min{??(x)│gi(x)≤0,i=1,2,...,m},在此,??和g1,g2,...,gm皆为Rn中的凸函数。通过适当定义一个函数φ,可以证明:若上述问题的可行区域非空,则φ的不动点即为该问题的解。
在1964年以前,所有不动点定理的证明都是存在性的证明,即只证明有此种点存在。1964年,C.E.莱姆基和 J.T.Jr.豪森对双矩阵对策的平衡点提出了一个构造性证明。1967年,H.斯卡夫将此证法应用到数学规划中去。其后,不动点定理的构造性证明有了大的发展和改进。
H.斯卡夫的证明是基于一种所谓本原集,后来的各种发展皆基于某种意义下的三角剖分。现以n 维单纯形Sn为例来说明这一概念,在此,。对每一i, 将区间0≤xi≤1依次分为m1,m2...等分,m12<...,mi→,是给定的一列正整数。对于固定的i,过分点依次作平行于xi=0的平面。 这些平面将Sn分成若干同样大小的n维三角形。它们的全体作成的集 Gi,称为Sn的一三角剖分。设??(x)为 Sn→Sn的一连续函数,x=(x1,x2,...,xn+1),??(x)=(??1(x),??2(x),...,??n+1(x))。定义。由于??(x)和x皆在Sn上,若有则显然有??(x)=x,即x为??(x)的一不动点。
对每一点y∈Sn赋与标号l(y)=k=min{j│y∈Cj,且yj>0}。由著名的施佩纳引理,在Gi中必存在一三角形σi,它的n+1个顶点yi(k)的标号分别为k(k=1,2,...,n+1)于是可得一列正数ij(j→),使得(k)→yk,k=1,2,...,n+1。根据σi的作法,当ij→时,收敛成一个点x。故yk=x,k=1,2,...,n+1。因 (k)的标号为k,故yk∈Ck,因而即x为所求的不动点。因此,求??(x):Sn→Sn 的不动点问题就化为求 σi(i=1,2,...) 的问题。为了计算上的效果,除了上述的标号法之外,还有标准整数标号法、向量标号法等等。关于如何求σi,有变维算法、三明治法、同伦算法、变维重始法等等,通过适当定义,可将上之Sn改为Rn或Rn中之一凸集。求一凸函数在一凸集上的极值问题也可化为求不动点问题。一般说来,这条途径适用于维数不高但问题中出现的函数较为复杂的情况。
参考书目
A.J.J.TalmanVariable Dimension Fixed Point Algorithms and Triangulations, Mathematisch Centrum, Amsterdam, 1980.
不动点定理在代数方程、微分方程、积分方程、数理经济学等学科中皆有广泛的应用。例如,关于代数方程的基本定理,要证明??(x)=0必有一根,只须证明在适当大的圆│x│≤R 内函数??(x)+x有一不动点即可;在运筹学中,不动点定理的用途至少有二:一为对策论中用来证明非合作对策的平衡点的存在和求出平衡点;一为数学规划中用来寻求数学规划的最优解。对于一个给定的凸规划问题:min{??(x)│gi(x)≤0,i=1,2,...,m},在此,??和g1,g2,...,gm皆为Rn中的凸函数。通过适当定义一个函数φ,可以证明:若上述问题的可行区域非空,则φ的不动点即为该问题的解。
在1964年以前,所有不动点定理的证明都是存在性的证明,即只证明有此种点存在。1964年,C.E.莱姆基和 J.T.Jr.豪森对双矩阵对策的平衡点提出了一个构造性证明。1967年,H.斯卡夫将此证法应用到数学规划中去。其后,不动点定理的构造性证明有了大的发展和改进。
H.斯卡夫的证明是基于一种所谓本原集,后来的各种发展皆基于某种意义下的三角剖分。现以n 维单纯形Sn为例来说明这一概念,在此,。对每一i, 将区间0≤xi≤1依次分为m1,m2...等分,m1
对每一点y∈Sn赋与标号l(y)=k=min{j│y∈Cj,且yj>0}。由著名的施佩纳引理,在Gi中必存在一三角形σi,它的n+1个顶点yi(k)的标号分别为k(k=1,2,...,n+1)于是可得一列正数ij(j→),使得(k)→yk,k=1,2,...,n+1。根据σi的作法,当ij→时,收敛成一个点x。故yk=x,k=1,2,...,n+1。因 (k)的标号为k,故yk∈Ck,因而即x为所求的不动点。因此,求??(x):Sn→Sn 的不动点问题就化为求 σi(i=1,2,...) 的问题。为了计算上的效果,除了上述的标号法之外,还有标准整数标号法、向量标号法等等。关于如何求σi,有变维算法、三明治法、同伦算法、变维重始法等等,通过适当定义,可将上之Sn改为Rn或Rn中之一凸集。求一凸函数在一凸集上的极值问题也可化为求不动点问题。一般说来,这条途径适用于维数不高但问题中出现的函数较为复杂的情况。
参考书目
A.J.J.TalmanVariable Dimension Fixed Point Algorithms and Triangulations, Mathematisch Centrum, Amsterdam, 1980.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条