1) C~4ISR/M&S interoperability
C4ISR/M&S互操作
1.
Technolgies and methods have been developed to architect a simulation facility for C~4ISR/M&S interoperability,which propoes an aspect oriented framework(AOF) and an application service platform for simulation system.
基于仿真互操作标准组织(S im u lation In teroperab ility S tandards O rgan ization,S ISO)C4ISR/M&S互操作技术参考模型和高层体系结构(H igh L eve lA rch itecture,HLA),C4ISR/M&S互操作HLA仿真设施为架构仿真系统运行体系提出了面向方面框架(A spect O rien ted F ram ew ork,AOF)和应用服务平台的技术。
2) interoperation
互操作
1.
Security violation detection for role-based access control based interoperation in distributed environment;
分布式环境下基于RBAC互操作的安全检测
2.
Model of dynamic workflow interoperation based on mobile Agent and Web Service;
基于移动Agent和Web Service的动态工作流互操作模型
3.
Application of OPC Technology in Realizing Filedbus Interoperation;
OPC技术在现场总线互操作中的应用
3) Interoperability
['intər,ɔpərə'biləti]
互操作
1.
Key technology of interoperability between CAD and digitizing systems;
CAD系统与异构数字化系统互操作技术研究
2.
Container supporting Portlet interoperability;
支持Portlet互操作的容器
3.
Semantic interoperability of GeoAgent based on ontology;
地理本体Agent在紧急状态决策过程中的语义互操作
4) interactive operation
交互操作
1.
Analysis & Design of Interactive Operations in Graphical Scenes;
图形场景交互操作的分析设计
2.
By integrating key techniques of AR system based on vision computation,the interactive operation functions provided to users were induced into three aspects including interaction with real world,interaction with virtual world and interaction with history.
结合基于视觉计算的增强现实系统的关键技术,将需要为用户提供的交互操作功能归纳为与现实世界交互、与虚拟物体交互以及与历史交互三个方面,并探讨了利用虚实合成相关参数来存储和调出实景中虚实合成效果的方法。
3.
Interactive operation function of three-dimensional model was realized.
利用OpenGL技术对微地震监测中获取的事件数据和煤层的掘进情况进行了三维可视化,同时结合Visual C++中的面向对象技术对其可视化界面进行开发,并实现了三维模型的交互操作功能。
5) interoperation
互操作性
1.
Research of Distributed Object s Interoperation in Heterogeneous Environment;
异构环境下分布组件的对象互操作性的研究
2.
The experiment shows that the system has excellent compatibility and interoperation among distant device,concentrator and measuring ammeter.
针对传统的自动抄表系统中存在规约互操作性差、系统不易集成的弊端,引入一种新型的DLMS/COSEM规约来构建抄表系统,并利用局域网资源实现远程抄表,为自动抄表系统增加了一种新的接入方式和数据交换方法。
6) interoperability
['intər,ɔpərə'biləti]
互操作性
1.
A new generation communication protocol standard with interoperability for energy meter;
具有互操作性的新一代电能表通信协议标准
2.
Interoperability Test Research on BGP4+;
BGP4+互操作性测试研究
3.
Research on Interoperability of PKI in E-government Services;
网上报税中PKI互操作性的研究
补充资料:C4ISR系统
C4ISR是指挥、控制、通信、计算机、情报及监视与侦察的英文单词的缩写。C4ISR系统是现代军队的神经中枢,是兵力的倍增器。美国战略C4ISR系统是美国军事指挥当局作出重大战略决策以及战略部队的指挥员对其所属部队实施指挥控制、进行管理时所用的设备、器材、程序的总称,是美国整个军事C4ISR系统的重要组成部分。
1.战略C4ISR系统的“大脑”指挥中心是战略C4ISR系统的“大脑”。它主要包括国家军事指挥中心、备用国家军事指挥中心和国家空中作战中心三处。在指挥中心,美国总统兼武装部队总司令利用指挥链逐级向第一线作战部队下达命令,最快只需3~6分钟;若越级向核部队下达命令,最快只需要1~3分钟;只需40秒钟便可实现与主要司令部的电话会议。指挥中心是美国军事当局分析判断局势,定下决心,下达命令的中心,是C4ISR系统的核心。国家军事指挥中心始建于1962年,设在五角大楼内。该中心负责平时至三级战备的指挥,分设四个室,分别是参谋长联席会议室、通信室、当前态势显示室以及电子计算机和屏幕投影显示设备技术室。该中心有3台“霍尼韦尔”6000系列大型计算机作为主机,用于处理各种军事数据。有6个2.4米×3米的大屏幕显示器,用于在紧急会议室显示敌我力量及其他情报。它拥有先进的通信联络设备如参谋长联席会议警报网、自动电话会议系统、紧急文电传输系统等终端设备。该中心存有8份进行全面战争的计划和60份在各种危机情况下行动的计划。
备用国家军事指挥中心始建于1967年,位于华盛顿以北约110千米的马里兰州里奇堡地下,工程设施加固,生存能力较强。它与国家军事指挥中心相连,设有军事指挥的重要数据库。当美军进入二级战备时便接替指挥任务。
国家空中作战中心,设在阿拉斯加州的奥弗特空军基地,原名国家紧急空中指挥所,在核战争中承担对战略部队的指挥与控制职责。1993年易名为国家空中作战中心,其职责也不再限于核战。该作战中心为4架E-4B型飞机,称作“尼普卡”,停驻在格里索姆空军基地,由奥弗特空军基地的指挥控制中心控制。国家空中作战中心平时不参与指挥,只了解情况。当美军处于临战状态时,它便升空待命。一旦国家指挥当局登上“尼普卡”,该中心便成为主要的指挥作战中心。因它能在空中机动,是美国战略C4ISR系统中生存能力最强的一部分。它配有大量的先进的电子设备,能同卫星、导弹潜艇、导弹发射中心、国家军事指挥中心、备用国家军事指挥中心等进行通信。
2.战略C4ISR系统的“神经”
通信系统把各指挥中心、预警系统、作战部队以及情报部门等有机联系起来,形成一个整体。在美国战略C4ISR系统中,有通用和专用的40多个通信系统,这些通信系统构成纵横交错的网络,就象人体内的神经一样,将大脑的各种指令传给肢体,同时又将反馈信息有效地传给大脑。
美国战略C4ISR系统中主要的通用通信系统有国防通信系统、国防卫星通信系统、最低限度紧急通信网等。其中国防通信系统建于60年代初,由国防通信局负责管理和技术保障,三军负责维修。它主要保障美国总统同国防部长、参谋长联席会议、情报机关、战略部队的通信联络,保障国防部长与各联合司令部、特种司令部的通信联络,为战略防御提供情报。其中的北方弹道导弹预警系统建立最早,由3个大型雷达站组成,可提供15分钟的预警时间。但该系统对付低空目标和多目标的能力较差,为了改变这种状况,美军于70年代起对其进行改进。改进后其功能大大提高,如图勒站的作用距离从原来的4800千米增到5200千米,扫描范围扩展到240°。
潜射弹道导弹预警系统由预警卫星和陆基预警雷达网承担。前者发现来袭目标,后者进一步跟踪、识别和获取精确数据。此外,空间监视系统和海洋监视卫星对系统提供支援。
1.战略C4ISR系统的“大脑”指挥中心是战略C4ISR系统的“大脑”。它主要包括国家军事指挥中心、备用国家军事指挥中心和国家空中作战中心三处。在指挥中心,美国总统兼武装部队总司令利用指挥链逐级向第一线作战部队下达命令,最快只需3~6分钟;若越级向核部队下达命令,最快只需要1~3分钟;只需40秒钟便可实现与主要司令部的电话会议。指挥中心是美国军事当局分析判断局势,定下决心,下达命令的中心,是C4ISR系统的核心。国家军事指挥中心始建于1962年,设在五角大楼内。该中心负责平时至三级战备的指挥,分设四个室,分别是参谋长联席会议室、通信室、当前态势显示室以及电子计算机和屏幕投影显示设备技术室。该中心有3台“霍尼韦尔”6000系列大型计算机作为主机,用于处理各种军事数据。有6个2.4米×3米的大屏幕显示器,用于在紧急会议室显示敌我力量及其他情报。它拥有先进的通信联络设备如参谋长联席会议警报网、自动电话会议系统、紧急文电传输系统等终端设备。该中心存有8份进行全面战争的计划和60份在各种危机情况下行动的计划。
备用国家军事指挥中心始建于1967年,位于华盛顿以北约110千米的马里兰州里奇堡地下,工程设施加固,生存能力较强。它与国家军事指挥中心相连,设有军事指挥的重要数据库。当美军进入二级战备时便接替指挥任务。
国家空中作战中心,设在阿拉斯加州的奥弗特空军基地,原名国家紧急空中指挥所,在核战争中承担对战略部队的指挥与控制职责。1993年易名为国家空中作战中心,其职责也不再限于核战。该作战中心为4架E-4B型飞机,称作“尼普卡”,停驻在格里索姆空军基地,由奥弗特空军基地的指挥控制中心控制。国家空中作战中心平时不参与指挥,只了解情况。当美军处于临战状态时,它便升空待命。一旦国家指挥当局登上“尼普卡”,该中心便成为主要的指挥作战中心。因它能在空中机动,是美国战略C4ISR系统中生存能力最强的一部分。它配有大量的先进的电子设备,能同卫星、导弹潜艇、导弹发射中心、国家军事指挥中心、备用国家军事指挥中心等进行通信。
2.战略C4ISR系统的“神经”
通信系统把各指挥中心、预警系统、作战部队以及情报部门等有机联系起来,形成一个整体。在美国战略C4ISR系统中,有通用和专用的40多个通信系统,这些通信系统构成纵横交错的网络,就象人体内的神经一样,将大脑的各种指令传给肢体,同时又将反馈信息有效地传给大脑。
美国战略C4ISR系统中主要的通用通信系统有国防通信系统、国防卫星通信系统、最低限度紧急通信网等。其中国防通信系统建于60年代初,由国防通信局负责管理和技术保障,三军负责维修。它主要保障美国总统同国防部长、参谋长联席会议、情报机关、战略部队的通信联络,保障国防部长与各联合司令部、特种司令部的通信联络,为战略防御提供情报。其中的北方弹道导弹预警系统建立最早,由3个大型雷达站组成,可提供15分钟的预警时间。但该系统对付低空目标和多目标的能力较差,为了改变这种状况,美军于70年代起对其进行改进。改进后其功能大大提高,如图勒站的作用距离从原来的4800千米增到5200千米,扫描范围扩展到240°。
潜射弹道导弹预警系统由预警卫星和陆基预警雷达网承担。前者发现来袭目标,后者进一步跟踪、识别和获取精确数据。此外,空间监视系统和海洋监视卫星对系统提供支援。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条