说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 框架算子
1)  frame operator
框架算子
1.
Canonical frames,normalized tight canonical frames,and two canonical frames dual to each other have been characterized by using A-value linear operator T:H→l~2(A);the linearity,boundary and reversibility of the A-value,as well as the equivalence of positive frame operator S=T*T have also been discussed.
应用A-值线性算子T:H→l2(A),刻画了H中标准框架、正规紧标准框架及两个互为对偶的标准框架,讨论了A-值线性、有界、可逆及正的框架算子S=T*T的等价性质,证明了模H的标准框架与它的典型对偶标准框架是正规紧标准框架的充分必要条件是框架算子S=I。
2.
In this paper,some important featur es of frame in Hilbert space was discu ssed,defined a frame operator,and a frame based on practical question,let the projection of the original signal onto the frame is just the non -uniform sample s.
在Hilbert空间中讨论了框架的一些重要的性质,定义了一个框架算子,并讨论了该算子的性质。
3.
In this paper, we discuss some important features of frame in Hilbert space, defined a frame operator.
在Hillbert空间中讨论了框架的一些重要的性质,定义了一个框架算子
2)  operator frame
算子框架
1.
In this article, we introduce the concepts of X_d frames, frames of order p and operator frames, give a series of properties of them and discuss the relations between them and p-frames, Banach frames or X_d—frames.
本文引入了Banach空间中的X_d框架,p阶框架和算子框架的概念,系统地研究了这三种框架的一系列性质,探讨了它们与原有的p-框架,Banach框架和X_d-框架和之间的关系,并借助于Banach框架和p阶框架在Banach空间中建立起较完整的重构理论。
3)  pre-frame operator
预框架算子
1.
The matrix expression of the pseudo-inverse operator concerning the pre-frame operator was provided,and finally the theory of pseudo-inverse operators to some non-frame sequences was developed.
然后把伪逆算子应用在框架理论中,同时给出了预框架算子的伪逆算子的矩阵表示。
4)  preframe operator
预框架算子
1.
The paper explores the corresponding relation between the states of preframe operators and the classifications of frames.
阐述了预框架算子的态和框架分类之间的对应关系 ;讨论了框架的线性分解问题 ,特别是两个框架的线性组合在何时仍是框架的问
5)  g-frame operator
g-框架算子
6)  Frame of subspaces operators
子空间框架算子
补充资料:凹算子与凸算子


凹算子与凸算子
concave and convex operators

凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),00. 类似地,一个算子A称为今单(~ex)(更确切地,在K上“。凸的),如果条件l)与2)满足,但不等式(*)用反向不等号代替,并且函数粉(x,t)<0. 一个典型的例子是yP‘KOH积分算子 通rx‘t、1二f天(t.:,x(s))山, G它的凹性与凸性分别由纯量函数介(t,s,。)关于变量u的凹性与凸性所确定.一个算子的凹性意味着它仅仅包含“弱”的非线性—随着锥中的元素的范数增加,算子的值“慢慢地”增加.一般说来,一个算子的凸性意味着,它包含“强”的非线性.由于这个理由,包含凹算子的方程在许多方面不同于包含凸算子的方程;前者的性质类似于相应的纯量方程,而不同于后者,后者关于正解的唯一性定理是不成立的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条