1) elastic-plastic dynamic response
弹塑性动力响应
1.
Based on large deformation dynamic equation and finite difference method, the elastic-plastic dynamic responses of a fully clamped shallow arch subjected to projectile impact were studied numerically.
基于大变形动力学微分方程并利用有限差分离散分析,研究了子弹撞击作用下固支浅圆拱的弹塑性动力响应。
2.
Based on dynamic differential equations and using finite difference method, the elastic-plastic dynamic responses of beams subjected to dynamic loads are analyzed.
该文建立了柔性动边界梁的计算模型,模型考虑了梁端有弹性支承、阻尼支承以及刚性块等情况,并利用有限差分方法对运动方程进行离散,研究分析了在动载作用下柔性动边界梁的弹塑性动力响应。
2) elastoplastic dynamic response
弹塑性动力响应
1.
The elastoplastic dynamic response of an infinite cylindrical shell to underwater explosive loading is proposed.
基于圆柱壳与液流场相互作用的流固耦合运动条件和大挠度变形理论,研究无限长圆柱壳在水下爆炸冲击载荷作用下的弹塑性动力响应问题。
4) dynamic plastic response
塑性动力响应
1.
Large deformation dynamic plastic response of stiffened plates;
加筋板的大挠度塑性动力响应研究
2.
Numerical simulation of dynamic plastic response of flat plates subjected to underwater explosion shock waves;
水下爆炸冲击波作用下平板塑性动力响应的数值模拟
3.
This paper has analyzed the dynamic plastic response of simply supported circular plate under explosive load by using twins shear strength theory considered the strength-differential effect.
讨论采用不同的拉压强度比对简支圆板塑性动力响应的影响。
5) plastic dynamic response
塑性动力响应
1.
The application of moments method to the plastic dynamic response of damping medium simple square-plate;
用矩量法解阻尼介质中简支方板的塑性动力响应问题
6) elasto plastic response
弹塑性响应
1.
The effects,due to the pressure of air contained in the vessel and the interior vessel structure,on the elasto plastic response of the vessel are studied.
研究了容器内部抽真空和内层容器结构形式等因素对爆炸容器弹塑性响应的影响,探讨了平封头应用的可行
补充资料:弹—塑性变分原理
弹—塑性变分原理
elastic-plastic variational principle
tan一suxing bionfen yuanll弹一塑性变分原理(elastie一plastic variation-al Principle)适于弹一塑性材料的能量泛函的极值理论。包括最小势能原理和最小余能原理。塑性加工力学中常用最小势能原理。变形力学问题的能量解法和有限元解法都基于最小势能原理。最小势能原理有全量理论最小势能原理和增量理论最小势能原理。 全量理论最小势能原理在极值路径(应变比能取极值的路径)下运动许可的位移场u‘中,真实的位移和应变使所对应的总势能取最小,即总势能泛涵巾取最小值,其表达式为”一0,’一万〔A(一,一关一〕dV一好多!一‘“ (l)式中“:为位移;户:为外力已知面上的单位表面力;关为体力;A(气)为应变比能。 A(勒)随材料的模型而异。对应变硬化材料(图a), E严_‘_‘_ A(乓r)一二丁二一气助+{刃(r)dr(2) 6(1一2刃~一“‘J一、-一、- 0式中E,,分别为弹性模量和泊松比;艺一硫瓜,r一掩不万,,,f,一,一音。魔。,,一,一,一音。*。!,;。f,为克罗内克(L.Kroneeker)记号,i=夕时a,一l,i笋少时民,一。,把式(2)代入式(1)便得到卡恰诺夫(几·M·Ka、aHoe)原理x的表达式。i厂:八 I’—几 I’一 ab 乞一乏(r)关系图 a一应变硬化材料;占~理想塑性材料 对于理想塑性材料(图b), 艺~ZGr(r
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条