1) Elastic-plastic stress
弹塑性应力
2) elastic-plastic stress field
弹塑性应力场
3) elastic-plastic fracture stress
弹塑性断裂应力
4) elastic-plastic dynamic response
弹塑性动力响应
1.
Based on large deformation dynamic equation and finite difference method, the elastic-plastic dynamic responses of a fully clamped shallow arch subjected to projectile impact were studied numerically.
基于大变形动力学微分方程并利用有限差分离散分析,研究了子弹撞击作用下固支浅圆拱的弹塑性动力响应。
2.
Based on dynamic differential equations and using finite difference method, the elastic-plastic dynamic responses of beams subjected to dynamic loads are analyzed.
该文建立了柔性动边界梁的计算模型,模型考虑了梁端有弹性支承、阻尼支承以及刚性块等情况,并利用有限差分方法对运动方程进行离散,研究分析了在动载作用下柔性动边界梁的弹塑性动力响应。
5) Thermal elas to-toplastic stress
热弹塑性应力
6) Thermo-elastic-plastic field
热弹塑性应力场
补充资料:弹—塑性变分原理
弹—塑性变分原理
elastic-plastic variational principle
tan一suxing bionfen yuanll弹一塑性变分原理(elastie一plastic variation-al Principle)适于弹一塑性材料的能量泛函的极值理论。包括最小势能原理和最小余能原理。塑性加工力学中常用最小势能原理。变形力学问题的能量解法和有限元解法都基于最小势能原理。最小势能原理有全量理论最小势能原理和增量理论最小势能原理。 全量理论最小势能原理在极值路径(应变比能取极值的路径)下运动许可的位移场u‘中,真实的位移和应变使所对应的总势能取最小,即总势能泛涵巾取最小值,其表达式为”一0,’一万〔A(一,一关一〕dV一好多!一‘“ (l)式中“:为位移;户:为外力已知面上的单位表面力;关为体力;A(气)为应变比能。 A(勒)随材料的模型而异。对应变硬化材料(图a), E严_‘_‘_ A(乓r)一二丁二一气助+{刃(r)dr(2) 6(1一2刃~一“‘J一、-一、- 0式中E,,分别为弹性模量和泊松比;艺一硫瓜,r一掩不万,,,f,一,一音。魔。,,一,一,一音。*。!,;。f,为克罗内克(L.Kroneeker)记号,i=夕时a,一l,i笋少时民,一。,把式(2)代入式(1)便得到卡恰诺夫(几·M·Ka、aHoe)原理x的表达式。i厂:八 I’—几 I’一 ab 乞一乏(r)关系图 a一应变硬化材料;占~理想塑性材料 对于理想塑性材料(图b), 艺~ZGr(r
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条