1) directional connected network system
有向连通网络
1.
In order to perfect the theories of the dynamic core and its application in the traffic management system,the methods of calculating the core and coritivity of the directional connected network system are proposed.
为了完善网络系统科学的动态核度理论及其在道路交通网监控管理中的应用,给出有向连通网络核和核度的计算方法,提出动态流网络系统动态核的概念。
4) directed networks
有向网络
1.
Based on non-uniform swarm,a dynamic model in directed networks was constructed.
用图论模型表示智能体之间的相互作用或通信关系,基于异构的智能群体,建立了动态的有向网络模型。
2.
The deformed Floyd algorithm of the shortest path between the two nodes in the directed networks is presented and the complexity of time shares the same rank with Floyd algorithm,but it reveals an object image and provides an easy way to programme.
给出了求有向网络中每对顶点间最短路径的变形Floyd算法,其时间复杂度与Floyd算法同量级,形象直观且易于编写程
3.
So far, few of researches have focused on the theory and application of directed networks, and most of them treated directed networks as a na?ve extension of undirected networks .
迄今为止,在复杂网络的研究中,对有向网络的系统的研究还很少,许多学者认为有向网络只是无向网络的自然扩充,他们把本属于有向网络的问题都简化抽象为无向网络问题。
5) Directed network
有向网络
1.
May be studied as the weighted directed network system.
具有网络通讯结构的信息系统在以Petri网为模型进行描述时可以归结为两类加权有向网络系统的研究,文章首先将Petri网模型描述下的信息系统结构分解为由两类性质不同的系统要素构成的有向网络图,并对这两类有向网络图引进了加权核和加权核度的概念和定义。
2.
The two-way search algorithm for finding the shortest path between two vertexes in a directed network in this paper is proposed.
提出了一种求解有向网络上两顶点间最短路径的双向搜索算法,经理论证明和实际应用,该方法较原Dijktra算法可平均提高8倍的计算效
6) digraph network
有向网络
1.
In this paper, we study the propeties of the spanning incoming tree in a digraph network, and propose a simple algorithm for finding the minimum spanning incoming tree in a digraph network, we also present an example for applying this algorithm.
本文研究了有向网络中支撑入树的性质 ,提出了在有向网络图中寻找以某一指定点为根的最小支撑入树的一种较简便的算法 ,并给出了应用该算法的一个实际算
补充资料:单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通超导体一般指的是不包含有非超导绝缘物质或空腔贯通的整块同质超导体,若有非超导绝缘物质或空腔贯通的超导体则称为多(复)连通超导体。从几何学上讲,在超导体外表面所包围的体积内任取一曲线回路,这回路在超导物质内可收缩到零(或点),且所取的任意回路均可收缩到零而无例外,则称单连通超导体。若有例外,即不能收缩到零,则称多连通超导体。例如空心超导圆柱体,则在围绕柱空腔周围取一回路就不能收缩为零。多连通超导体可有磁通量子化现象(见“磁通量子化”)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条