1) belief function
信度函数
1.
Because some combat effectiveness indexes which are related to human behavior are difficult to be quantified with belief function to explore indefinite problems.
针对某些作战效能指标由于与人的行为等因素关系密切而难以量化,运用信度函数探索不确定评价问题。
2.
The main idea was to obtain belief function using the wavelet coefficient of infrared images and low light level images,then construct fuzzy density using the fuzzy edge evaluation function of local area,finally get fused wavelet coefficient by fuzzy integral and reconstruct fused image by inverse wavelet transform.
首先利用小波系数的区域特征获取模糊积分的信度函数,其次根据局部窗口内的模糊边缘评价函数自适应地构造模糊密度,最后由Choquet模糊积分确定融合后的小波系数,从而得到融合图像。
3.
According to the measurement results of the temperature and the voltage of circuit component,the belief function assignment of two sensors to circuit component,and the fusion belief function assignment was obtained by using DS rule and fuzzy method respectively,th.
通过测试电路中的被诊断元件的工作温度和工作电压,得出了DS证据理论中两传感器对各待诊断元件的信度函数分配,再分别利用利用模糊规则和DS联合规则得到融合后的信度函数分配,从而确定故障元件。
2) reliability function
信度函数
1.
By using the theory of function S-rough sets and random characteristics of function transference,the concept of reliability of function transference and reliability function are presented.
利用函数S-粗集理论和函数迁移的随机性,提出函数迁移的信度及信度函数的概念;给出函数单项S-粗集与函数双向S-粗集的随机生成;讨论了随机生成的函数S-粗集的数学结构及信度特征。
2.
Based on S-rough sets theory and element transference random,the concepts of the reliability of element transference and reliability function are presented.
利用S-粗集理论和元素迁移的随机性,提出元素迁移的信度及信度函数的概念;给出了单向S-粗集与双向S-粗集的依信度生成;讨论了S-粗集依信度生成的特性。
3.
In this paper,the concept of reliability of property transference and reliability function was presented,and the generation of depending on the reliability of two direction variation S-rough sets was given.
提出双向变异S-粗集的属性迁移的信度及信度函数的概念,给出了双向变异S-粗集的依信度生成,讨论了双向变异S-粗集依信度生成的特性。
3) belief functions
信度函数
4) confidence function
自信度函数
5) reliability function
可信度函数
1.
In this paper, the major works are as follows:In this paper, a method for text categorization based on the fusion of multiple classifiers was presented, reliability function was introduction to select the text that hard to give determine by the main classifier, for these texts, multiple classifiers were used to give the determine which category the unlabeled documents belong to by voting.
通过引入可信度函数,选择出主分类器较难判决的文本,通过辅助分类器,对单一主分类器不易判决的文本通过多分类器投票方式进行判决。
2.
It was to evaluate the experimental result of single classifier using the reliability function,to classify the documents that were hard to be classified by voting.
通过引入可信度函数对单分类器效果进行评价,适时采用辅助分类器对较难分类的文档进行分类投票判决。
6) Degree of belief
信任度函数
补充资料:高斯函数模拟斯莱特函数
尽管斯莱特函数作为基函数在原子和分子的自洽场(SCF)计算中表现良好,但在较大分子的SCF计算中,多中心双电子积分计算极为复杂和耗时。使用高斯函数(GTO)则可使计算大大简化,但高斯函数远不如斯莱特函数(STO)更接近原子轨道的真实图象。为了兼具两者之优点,避两者之短,考虑到高斯函数是完备函数集合,可将STO向GTO展开:
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条