1) integral residual error
求积余项
2) integral remainder
积分余项
1.
An estimate of Taylor s integral remainder;
Taylor公式积分余项的一种估计
4) primary and remainder integrals compensation
主余项积分补偿
5) the Lagrange integral surplus term
Lagrange积分型余项
1.
The Taylor formula and its applications with the Lagrange integral surplus term are obtained by means of the basic theorem of differential and integral calculus and successively using the integration by parts.
以微积分学基本定理为工具逐次运用分部积分法得到了带有Lagrange积分型余项的Taylor公式及其应用。
6) remainder term
余项
1.
The Lagrange interpolation polynomial and its remainder term in space Rs are discussed.
讨论了Rs空间中的Lagrange插值多项式及其余项。
2.
Taylor Fomular is very important in numerical calculation, and it s remainder term reflects approximate degree of polynomial Q_n(x) to function f(x).
Taylor公式在数值计算中占有很重要的地位;它的余项反映了多项式Qn(x)逼近函数f(x)的程度。
3.
A new concept of algebraic precision of numerical differentiation formulae was introduced, and a new method of solving numerical differentiation formulae and its remainder term were obtainel by using waiting-decision coefficient method.
提出了数值微分公式的代数精度的概念,给出了利用待定系数法确定数值微分公式,并求出其余项的一种新方法。
补充资料:积余
1.积存﹐多馀。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条