说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 完全模群
1)  full modular group
完全模群
2)  full unimodular group
完全幺模群
3)  perfect group
完全群
1.
Making use of some conceptions and theorems of automorphism group and perfect group, obtains a relevant conclusion which is very close to the H?lder theorem without exception.
运用自同构群和完全群的有关概念和定理,得到了一个与Hlder定理非常接近而又不包含例外情况的相应结论。
2.
By using the property of perfect group and the known results obtained,this paper finds a set of basis of augmentation ideals for this group,so the structure of its quotinet groups can be determined.
利用完全群的一些性质及数学归纳法,得到了此类群任意次增广理想的一组基底,并且解决了增广商群的结构问题。
4)  completely simple semigroups
完全单半群
1.
In chapter one,characterizations of congruences on regularsemigroups and completely simple semigroups are introduced.
第一章引言部分主要介绍了正则半群,完全单半群上同余的刻划以及逆半群的Rees矩阵半群上某些同余的描述。
5)  completely Archimedean semigroups
完全Archimedean半群
6)  completely simple semigroup
完全单半群
1.
A constructing method for completely regular semigroup is offered by using completely simple semigroup,semilattice and constructing functions.
对完全正则半群用完全单半群、半格和结构函数给出一种构造方法,同时研究完全正则半群同态与结构函数的关系,讨论完全正则半群的织积。
2.
The author discusses the problem of the semidirect products of completely simple semigroups without identity element.
在去掉幺元的情况下,讨论了完全单半群的半直积问题。
3.
In this paper, we studied the structure and vertex transitive property of directed Cayley graphs Cay(S, A) on completely simple semigroup with degree 2.
本文讨论了2度完全单半群有向Cayley图Cay(S,A)的结构和顶点传递性质。
补充资料:模群


模群
modular group

模群[n洲测匕邵议甲;MO月y几,p。朋rpy,。a] 所有形如 az+b Z~y《Z,二—,口口一OC=l气1) CZ十a的分式线性变换下组成的群r,这里a,b,c,d是有理整数.模群可以和商群sLZ(z)/{士E}等同起来,这里 。_了10、 E=l久丫】, 一火01/’且模群是玫群(Liegro叩)PSLZ(R)“SL:(R)/{土引中的一个离散子群(disa℃tesub脚uP)这里SLZ(R)( SLZ(Z))是由矩阵 了。b、 长“d/作成的群,其中a,b,c,d为实数(整数),而ad一bc二1.模群是上半复平面H={:二x十iy:y>0}(有时称为月。民t”eBCK戒平面(助bache话kii phne)或Poin。屁上半平面(Poin口正uPper ha】印h朋”的离散变换群(曲峨记g旧uP ofti习斑场~tions),且有由生成元T:z~艺十1,S::~一1/:和关系式夕=(ST),=l给出的表现,也就是说,它是由S生成的2阶循环群和由ST生成的3阶循环群的自由积(见[2」). 对模群的兴趣与模函数(m记川ar fuJlction)的研究有关,模函数的R胶匀田”.曲面(R七~surface)是商空间H/r,它与模群的基本区域G等同.其紧化Xr二(H/r)口的与复射影直线解析同构,这里的同构由基本模函数J(z)给出.基本区域G有有限的月〔石a”eB以浦面积: J厂’dxd,一晋, G这就是说,模群是第一类F回‘群(Fucl犯助孚。印)(见汇3]).对于格L二Z+Z:(:任H)来说,格L、二Z十27(:)等价于L,这里 ,一子“倪、。r, \“dZ也就是说,LI可以通过用一个非零复数又二(cz+d)一’乘以L中的元素来得到. 对每个格有一个复环面C/L与之对应,它解析等价于一条非奇异的三次曲线(一条椭圆曲线(翻pUcCurve)).这就给出商空间H/r的点、格的等价类以及(解析)等价的椭圆曲线类之间的一个一一对应(见【3」). 研究模群的子群在模形式和代数曲线的理论中是有意义的(见代数曲线(algeb献~);模形式(mod,ukir form”·水于〔lewt)N)’的丰回伞矛群(principlecongruellCe subgrouP)T(N),N是一个整数,是形如(1)的变换下(:)作成的群,其中a王d三l(modN),。三b三。(modN).如果对某个N有了,r(N),则子群fcr称为一个同余子群(collglellCe subgo叩),满足条件的最小的N称为了的水平(level).水平N的同余子群的例子如下:c被N整除时变换(l)作成的群r。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条