1) L-mapping
L-映射
1.
Based on the characterizations of images of paracompact locally separable spaces under some L-mappings,the images of paracompact locally separable spaces are further studied in the paper.
给出了点可数k覆盖与sL系之间的关系并进一步得到仿紧局部可分空间在一些紧覆盖映射下的象与k覆盖以及与sL系之间的关系,探讨了仿紧局部可分空间在2-序列覆盖L-映射下的象与序列开覆盖之间的联系,建立了仿紧局部可分空间的一些L-映象之间的联系。
2) L-mappings
L-映射
1.
The characterizations of images of paracompact locally compact spaces under some specific L-mappings(sL-mappings) are discussed.
讨论了仿紧局部紧空间在一些特定L-映射(sL-映射)下象的性质,给出了仿紧局部紧空间在2-序列覆盖L-映象(sL-映象)的内在特征,建立了仿紧局部紧空间在一些L-映射(sL-映射)下象的联系。
3) L-fuzzy Mapping
L-fuzzy映射
1.
We obtain some decomposition theorems and representation theorems of L-fuzzy Mappings.
借助[3]中的Lβ和Lα集合套理论,引入Lβ集值映射套和Lα集值映射套概念,得出了L-fuzzy映射的分解定理和表现定理。
2.
In Chapter three,we investigate the closure operator in the view of the L-fuzzy mapping and study the related contents of closure operator in those subjects through the new viewpoints.
闭包算子这一概念出现在代数、拓扑和逻辑等学科中,本文第3章基于L-fuzzy映射的L-fuzzy闭包算子是从L-fuzzy映射出发来研究闭包算子,为代数、拓扑和逻辑等学科中与闭包算子相关的内容的研究提供了新的思路。
3.
In this paper,based on the L-fuzzy mapping and the image of L-fuzzy set,the L-fuzzy closure operator induced by the L-fuzzy mapping is given and its equivalent characterizations are obtained.
借助L-fuzzy映射和L-fuzzy集的像,给出了由L-fuzzy映射诱导的L-fuzzy闭包算子及其等价刻画。
4) (·)L-KKM mapping
(·)L-KKM映射
5) closed L mapping
闭L映射
6) L-continuous mapping
L-连续映射
补充资料:Poincaré回归映射
Poincaré回归映射
Poincare retuni map
关于所有半轨都与V相交的情况可见【A81. 上面提到的“琴真’担字回(‘cyl访drical’口姚esp解e)定义如下.考虑与(·)相关联的自治系统 又二.j(y,x),少二1.(Al)把f的定义域中每一点(y,x)均与(y+T,x)视为相同,注意到后者形如Rx刀的一点,这里D是R”的一个子集(当(*)定义于R”上时).这时(AI)定义“柱”I:xD上的一动力系统,I:是闭区间10,:j并视其两个端点为同一点,即为一圆.上面考虑的映射T:x卜,沪(:,x)就是I,xD上的动力系统(AI)到超曲面{0}xD中的Poinc沉映射. 关于整体截面的存在性,例如可见【A21 W.2节,以及【A3].在更一般的变换群的框架中可以讨论“擎侠匆泞’(蜘回slices),例如见【A,l·至于不可微动力系统局部截面的存在性,可见fA4」Vl.2节.在叶状结构理论中可以找到Poinca记回归映射在(叶的)和乐群之生成元中的推广.例如可见【A6) 关于Poinc乏晚回归映射在微分方程理论中的应用(周期轨道附近的性态),例如可见【AS](所谓“Fk现uet理论”(RO明ett】切ry)).Poi附悦回归映射fpo泳习戊r比川llnap;【.oe月e加。翎,,o、。丘p撇n“e」后继映射(suce巴sor服pp雌) 一个光滑的或至少是连续的流(连续时间动力系统(flow(cont访uous tilned”lanllc:115”tem))S={S,}和一个横截于它的超曲面V的,即是一个将点u〔V映到始于。的流之正半轨道一首次再度与F相交之点的映射T(它只对于那些有再度相交点存在的v点有定义).(超曲面V称为截面(sectlon),相交面(in-tersectillg sul毛‘e)或横截面(tmnsversal)).若dimV二l(从而{S。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条