2) explicit algebraic solution
显式代数解
3) algebraically explicit analytical solutions
代数显式解析解
1.
Even so,algebraically explicit analytical solutions covered in open literatures are very few up to now,on account of mathematical difficulties in accordance with analyzing partial differentialequations.
尽管如此,因解析求解各种偏微分方程在数学上有一定的难度,所以,国际上的公开文献中关于代数显式解析解的报道少之又少。
4) formal series solution
形式级数解
1.
The convergence of the formal series solution to the initial boundary value problem for the non-homogeneous wave equation is considered.
考虑非齐次波动方程初边值问题的形式级数解的收敛性问题。
5) the solution of formal series
形式幂级数解
1.
In Chapter 2, the II ordering is presented and the arbitrary functions and the arbitrary constants are least in the solution of formal series under the II ordering by illustration; Furthermore, the au.
在第二章中,作者给出了Reid标准型算法中的Ⅱ型序关系,通过举例说明在Ⅱ型序下,得到的形式幂级数解中任意函数和任意常数的个数最少;并提出了Reid标准型的一个重要应用:确定线性常系数偏微分方程组的目标方程。
6) explicit solution
显式解
1.
The explicit solution expressed by elementary function of equations of heat and mass transfer in spray air washer is solved.
利用常微分方程研究喷水室热质交换方程组的解,得到了各断面空气的干球温度和含湿量及水温之间的关系式,得出了喷水室热质交换方程组用初等函数表示的显式解,给出了各种状态参数情形下解的表达式。
2.
Based on the discrete-time difference equation of the plant,an explicit solution of Diophantine matrix polynomial equations in multivariable generalized predictive control is derived without appealing to Diophantine matrix polynomial equations recursions or iterations,which makes the applications of generalized predictive control much more convenient.
直接利用被控对象的离散差分方程推导出多变量广义预测控制中Diophantine矩阵多项式方程的显式解,从而避免了其递推求解或迭代求解,使广义预测控制的应用更加方便。
3.
Based on the relationship between the discrete-time difference equation and its observable state-space canonical form, the explicit solution to Diophantine equation in generalized predictive control is derived.
利用被控对象的离散差分方程与其状态空间能观标准型之间的关系,推导出广义预测控制中Diophantine方程的显式解,从而避免了其递推求解,使广义预测控制的应用更加方便。
补充资料:托事显法生解门
【托事显法生解门】
(术语)华严宗所立十玄门之一。同于天台宗之托事观。托于浅近事相而显深妙法理之法门也。密教事相门之标帜,全属于此门。(参见:玄门)
(术语)华严宗所立十玄门之一。同于天台宗之托事观。托于浅近事相而显深妙法理之法门也。密教事相门之标帜,全属于此门。(参见:玄门)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条