1) adaptive filtering algorithm
自适应滤波算法
1.
Varing forgetting factor correlation function adaptive filtering algorithm;
变遗忘因子相关函数自适应滤波算法
2.
On the basis of Least-Mean-Square(LMS) filtering and Recursive-Least-Square(RLS) filtering,the recently developed adaptive filtering algorithms such as the neural network approach,the QR decomposition approach,the unified model algorithm,the high-order cumulant-based algorithms are extensively reviewed.
分析了最小均方误差滤波和递归最小二乘滤波算法、自适应滤波的神经网络方法、基于QR分解的方法、统一模型下的自适应滤波及基于高阶累积量的自适应算法的优缺点,并对自适应滤波算法的未来发展做了展望。
3.
The results of the experiment show that all the measures used in the system can function effectively,but the adaptive filtering algorithm is the best.
实验结果表明三种滤波算法都能得到较好的效果,而其中自适应滤波算法效果最好。
2) adaptive filter algorithm
自适应滤波算法
1.
It takes the MLMS adaptive filter algorithm to restrain the narrow-band interference and uses nonlinear function of ACM filter to implement the nonlinear processing,thus obviously improving the capability of the adaptive filter.
文中研究了自适应非线性滤波在直扩通信中抑制窄带干扰的应用,采用修正LMS(MLMS)自适应滤波算法对窄带干扰进行抑制,并运用ACM滤波非线性函数进行非线性处理,使滤波性能明显改善。
2.
In relation to the classic time-domain adaptive filter algorithm of narrowband interference suppression,the narrowband interference suppression method based on the QR decomposition is a good performance of the new algorithm.
相对于扩频系统抑制窄带干扰的时域经典自适应滤波算法,基于QR分解的窄带干扰抑制方法是一种性能优良的新算法。
3) adaptive notch filter algorithM
自适应陷波滤波算法
4) RLS Adaptive Filtering
RLS自适应滤波算法
5) adaptive two-step filter
自适应两步滤波算法
1.
Aiming at the speciality of transcendental noise statistics and linearization error of measurement model effecting on filter precision during extended kalman filter with applications to passive location of IRSTS,we constructed adaptive two-step filter algorithm model for passive location of IRSTS by means of integrating two-step filtering algorithm with Sage-Husa noise statistics estimator.
在机载红外搜索跟踪系统被动定位研究中,针对扩展卡尔曼滤波算法要求先验的噪声统计及存在系统观测模型线性化误差影响滤波精度的特点,利用两步滤波算法并结合Sage-Husa噪声估计器构建了适用于机载IRSTS被动定位特点的自适应两步滤波算法模型,算法不仅实时在线地估计了观测噪声的统计特性,而且避免了观测模型线性化误差。
补充资料:自适应卡尔曼滤波
分子式:
CAS号:
性质:在利用测量数据进行滤波的同时,不断地由滤波本身去判断系统的动态是否有变化,对模型参数和噪声统计特性进行估计和修正,以改进滤波设计,缩小滤波的实际误差。此种滤波方法将系统辨识与滤波估计有机地结合为一体。
CAS号:
性质:在利用测量数据进行滤波的同时,不断地由滤波本身去判断系统的动态是否有变化,对模型参数和噪声统计特性进行估计和修正,以改进滤波设计,缩小滤波的实际误差。此种滤波方法将系统辨识与滤波估计有机地结合为一体。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条