1) air-cored cylindrical coil
空心圆柱线圈
1.
And then, the expression for calculating inductance of air-cored cylindrical coil is derived in this paper by using vector potential.
通过求解该边值问题得到了矢量磁位的表达式,然后利用矢量磁位推导出了空心圆柱线圈电感的计算式,并给出了求解计算式中函数T的函数表,以方便精度要求不高时的电感计算,最后用一个实例介绍了函数表的使用,同时验证了利用本文所给函数表求解线圈电感时,计算结果具有更高的精度。
2) cylindrical coil
圆柱线圈
1.
Presents the calculations of inductance of solenoid coil used for electromagnetic forming by using finite element analysis during which, the discharging coil is regarded as a solenoid coil and a cylindrical coil, and the comparison of the results calculated with the actual measurements and calculation model is thus built for the inductance of solenoid coil used for electromagnetic forming.
通过有限元法和解析法分别求解了电磁成形用螺线管线圈的电感 ,在解析法求解中分别将其等效为螺线管线圈和圆柱线圈 。
4) cylinder inductance sensor
圆柱形线圈
1.
The surface crack on the metal tested by using the cylinder inductance sensor is introduced.
介绍了利用圆柱形线圈作为传感器进行金属导体表面裂纹的无损检测系统的激励源、信号放大及A/D转换部分。
5) air-core coil
空心线圈
1.
Through comparison of them, it’s known that the AC-sampling circuit with air-core coil current transformer can completely satisfy the requirements of power system, and still can realize the protection of the wider current range.
通过对比可知,采用空心线圈电流互感器的交流采样方式完全能满足电力系统保护和测量的需要,而且还能实现更宽电流范围的保护。
2.
The paper presents the principle of the air-core coil current transformer and points out the differences between the electronic transformers and the traditional ones.
开发新型电子式互感器是电力系统自动化和数字化的一个发展方向 ,文中论述了空心线圈用做电流互感器的工作原理及与传统互感器的不同之处 ,根据保护的要求 ,重点分析了频响工作特性 ,并针对具体对象研制了样机。
3.
This paper analyzes the characteristics of RSD switching current, and selects measurement method by means of air-core coil.
首先分析了高压大功率RSD开关电流的特点,确认了空心线圈测量方法。
补充资料:横向磁场中的空心超导圆柱体(hollowsuperconductingcylinderinatransversalmagneticfield)
横向磁场中的空心超导圆柱体(hollowsuperconductingcylinderinatransversalmagneticfield)
垂直于柱轴(横向)磁场H0中的空心超导长圆柱体就其磁性质讲是单连通超导体。徐龙道和Zharkov由GL理论给出中空部分的磁场强度H1和样品单位长度磁矩M的完整解式,而在`\zeta_1\gt\gt1`和$\Delta\gt\gt1$条件下为:
$H_1=\frac{4H_0}{\zeta_1}sqrt{\frac{\zeta_2}{\zeta_1}}e^{-Delta}$
$M=-\frac{H_0}{2}r_2^2(1-\frac{2}{\zeta_2})$
这里r1和r2分别为空心柱体的内、外半径,d=r2-r1为柱壁厚度,ζ=r/δ(r1≤r≤r2),Δ=d/δ,δ=δ0/ψ,δ0为大样品弱磁场穿透深度,ψ是有序参量。显然此时H1→0,M→-H0r22/2,样品可用作磁屏蔽体。当$\zeta_1\gt\gt1$,$\Delta\lt\lt1$时,则
H1=H0/(1 ζ1Δ/2),
M=-H0r23[1-(1 ζ1Δ/2)-1]。
若$\zeta_1\Delta\gt\gt1$,则$H_1\lt\ltH_0$或H1≈0。所以,虽然$d\lt\lt\delta$,但磁场几乎为薄壁所屏蔽而难于透入空心,称ζ1Δ/2为横向磁场中空心长圆柱体的屏蔽因子。当$\zeta_1\Delta\lt\lt1$时,则H1≈H0,磁场穿透薄壁而均进入空腔,失去屏蔽作用,此时M≈0。类似于实心小样品,由GL理论可求出薄壁样品的临界磁场HK1,HK,HK2和临界尺寸等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条