1) hollow cylinder like melt
空心圆柱状熔体
2) hollow cylinder
空心圆柱体
1.
Based on elastic dynamics mechanics,the numerical simulation of guided circumferential wave propagation in hollow cylinder by Matlab programming was achieved.
基于弹性动力学理论,利用Matlab编程实现周向导波在空心圆柱体中传播的数值模拟。
2.
Analytical solution and numerical simulation of non-Fourier heat conduction models summarizes and comments on predecessors results and obtains the analytical solution of hyperbolic heat conduction model for a hollow cylinder with inner and outer boundary surfaces subjected to sudden temper.
本文在总结和评述前人研究成果的基础上对空心圆柱体内、外表面温度突变这类超急速传热问题的双曲线非傅立叶导热模型进行了分析求解和数值模拟。
3.
The outside diameter, height and inside diameter of the hollow cylinder can be measured automatically and quickly by the auto measuring system, the non-conformity workpiece can be eliminated, the measured data can be conveyed to the computer, and also can be stored and processed.
针对空心圆柱体一类机械零件,该自动测量系统能够在线快速自动测量其外径高度和内径,自动剔除不合格产品,能将测量数据远传到电脑终端实时显示,能电脑保存并处理测量数据。
3) hollow cylinders
空心圆柱体
1.
Circumferential SH wave in orthotropic hollow cylinders
正交各向异性空心圆柱体的周向SH波
2.
Circumferential SH waves in piezoelectric hollow cylinders
压电空心圆柱体中的周向SH波
4) hollow cylinder sample
空心圆柱体试样
5) hollow-cylinder source
空心圆柱体源
6) piezoelectric hollow cylinders
压电空心圆柱体
补充资料:横向磁场中的空心超导圆柱体(hollowsuperconductingcylinderinatransversalmagneticfield)
横向磁场中的空心超导圆柱体(hollowsuperconductingcylinderinatransversalmagneticfield)
垂直于柱轴(横向)磁场H0中的空心超导长圆柱体就其磁性质讲是单连通超导体。徐龙道和Zharkov由GL理论给出中空部分的磁场强度H1和样品单位长度磁矩M的完整解式,而在`\zeta_1\gt\gt1`和$\Delta\gt\gt1$条件下为:
$H_1=\frac{4H_0}{\zeta_1}sqrt{\frac{\zeta_2}{\zeta_1}}e^{-Delta}$
$M=-\frac{H_0}{2}r_2^2(1-\frac{2}{\zeta_2})$
这里r1和r2分别为空心柱体的内、外半径,d=r2-r1为柱壁厚度,ζ=r/δ(r1≤r≤r2),Δ=d/δ,δ=δ0/ψ,δ0为大样品弱磁场穿透深度,ψ是有序参量。显然此时H1→0,M→-H0r22/2,样品可用作磁屏蔽体。当$\zeta_1\gt\gt1$,$\Delta\lt\lt1$时,则
H1=H0/(1 ζ1Δ/2),
M=-H0r23[1-(1 ζ1Δ/2)-1]。
若$\zeta_1\Delta\gt\gt1$,则$H_1\lt\ltH_0$或H1≈0。所以,虽然$d\lt\lt\delta$,但磁场几乎为薄壁所屏蔽而难于透入空心,称ζ1Δ/2为横向磁场中空心长圆柱体的屏蔽因子。当$\zeta_1\Delta\lt\lt1$时,则H1≈H0,磁场穿透薄壁而均进入空腔,失去屏蔽作用,此时M≈0。类似于实心小样品,由GL理论可求出薄壁样品的临界磁场HK1,HK,HK2和临界尺寸等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条