1) p-biharmonic
p-双调和
1.
For fourth order p-biharmonic elliptic equation with Dirichlet boundary conditions,a new Pohozaev type identity is established.
对于具有Dirichlet边界条件的四阶p-双调和椭圆方程,建立了一个新的Pohozaev恒等式。
2) p-Biharmonic operator
p-双调和算子
3) p(x)-Biharmonic operator
p(x)-双调和算子
4) p-Biharmonic-like operators
类p-双调和算子
5) p-biharmonic problem
P-双调和问题
6) p-harmonic
p-调和
1.
In this paper, we consider the existence of nontrivial solutions for p-harmonic problem:where m > 0, f(x,u)/|u|p-2u tends to a positive constant as u→+∞.
在这篇文章里,我们将讨论R~N中p-调和问题:非平凡解的存在性。
2.
IIn this paper, we consider the Hardy-Littlewood inequality for p-harmonic type equation.
本篇文章我们主要是研究p-调和类型张量的Hardy-Littlewood不等式。
补充资料:2,2-双氯甲基-三亚甲基-双[双(2-氯乙基)磷酸脂]
CAS:38051-10-4
分子式:C13H24Cl6O8P2
中文名称:2,2-双氯甲基-三亚甲基-双[双(2-氯乙基)磷酸脂]
英文名称:2,2- bis(chloromethyl)-trimethylene bis[bis(2-chloroethyl)phosphate]
phosphoric acid, 2,2-bis(chloromethyl)-1,3-propanediyl tetrakis(2-chloroethyl)
2,2-bis(chloromethyl)trimethylene bis(bis(2-chloroethyl)phosphate)
2,2-bis(chloromethyl)-1,3-propanediyltetrakis(2-chloroethyl)phosphate
分子式:C13H24Cl6O8P2
中文名称:2,2-双氯甲基-三亚甲基-双[双(2-氯乙基)磷酸脂]
英文名称:2,2- bis(chloromethyl)-trimethylene bis[bis(2-chloroethyl)phosphate]
phosphoric acid, 2,2-bis(chloromethyl)-1,3-propanediyl tetrakis(2-chloroethyl)
2,2-bis(chloromethyl)trimethylene bis(bis(2-chloroethyl)phosphate)
2,2-bis(chloromethyl)-1,3-propanediyltetrakis(2-chloroethyl)phosphate
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条