说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 广义装配原理
1)  generalized assembly principle
广义装配原理
1.
A generalized assembly principle as well as its theory structure for product growth de- sign was studied through the analysis of the similarity between biological growth process and product growth process.
通过研究生物生长与产品设计之间的相似性,提出了基于广义装配原理的生长型设计过程,研究了广义装配原理的三个理论构成。
2)  generalized assembly
广义装配
1.
Based on analyses of the main design activities and function model of HMB design process, the concept of generalized assembly was introduced, so that the design process, including design activities, middle and final results, was described with the pattern of components or parts in the assembly model with the aid of assembly technology and association among components or parts of .
在分析液压集成块设计过程中的主要设计活动和设计过程功能模型基础上,引入广义装配的概念,借助于计算机辅助设计软件的装配技术及装配部件间的关联关系,在装配模型中以部件或零件的形式描述产品的设计过程,包括设计活动、中间设计结果及最终设计结果,并构造了液压集成块设计的广义装配平台。
3)  generalized Hamilton principle
广义Hamilton原理
4)  generalized work principle
广义功原理
1.
For the issue of trajectory optimization control of trajectory correction projectiles,an optimization control strategy on trajectory correction was derived with the aim of the smallest undershoot and the least energy loss and a new method was proposed based on generalized work principle of optimal control principle.
针对弹道修正弹的弹道最优控制问题,结合弹道控制中脱靶量最小和能量损耗最小的双重准则推导出弹道修正最优控制策略,提出基于最优控制理论广义功原理解决该最优控制问题的新方法,得到了最优解,并给出仿真算例。
5)  general assembly modeling
广义装配建模
1.
Research on general assembly modeling supporting product Lifecycle Engineering Design;
支持产品全生命周期设计的广义装配建模的研究
6)  generalized variational principle
广义变分原理
1.
Variational principles and generalized variational principles on flow theory of plasticity;
塑性增量理论的变分原理和广义变分原理
2.
On the generalized variational principle of viscoelastic beam columns with damage;
损伤粘弹性梁-柱的广义变分原理
3.
Application of generalized variational principle to calculation of additional expansion and contraction forces of CWR on bridge;
广义变分原理在桥上无缝线路伸缩附加力计算中的应用
补充资料:弹性力学广义变分原理
      弹性力学最小势能原理和弹性力学最小余能原理的推广,其特点是,变分式中各量都可有独立的变分,并且事前不受任何限制。在弹性力学空间问题中,最一般的广义变分原理可叙述为:弹性力学空间问题的解必须满足弹性体的广义势能变分为零的条件,该条件又称为驻值条件,即
  
  
  
  
  
   δ∏3=0,
  
  
  
  (1)式中∏3为弹性体的三类变量广义势能,其表达式为:
  
  
   式中u(εij)为应变能密度;εij为应变分量;fi为体积力分量;ui为位移分量;σij为应力分量;pi为面力分量;Ω为弹性体所占的空间;B1为位移边界面;B2为受力边界面;ūi和圴i为边界上给定的位移分量和面力分量;dB为面积微元;式中重复下标表示约定求和。在变分式(1)中,ui、εij、σij等15个函数都可有独立的变分,并且事前没有任何附加条件(表面力pi看作是从属于应力σij的量)。从条件(1)可推出弹性力学的全部基本方程,包括应变-位移关系、应力-应变关系、平衡方程和边界条件。上述变分原理的独立变量有位移、应变、应力三类,因此称为三类变量广义变分原理。它是中国力学家胡海昌于1954年首先提出的,日本的鹫津久一郎于1955年也独立地得到这一原理,所以又称胡-鹫津原理。
  
  弹性力学广义变分原理有一种稍弱的形式,即二类变量广义变分原理,又称为赫林格-瑞斯纳原理。它由E.赫林格于1914年和E.瑞斯纳于1950年分别独立提出,其数学表达式为:
  
  
  
  
  
    δ∏2=0,
  
  
   (3)式中
  
  
    式中uij)为余能密度。∏2中的独立自变函数有ui和σij两类共九个。将应变-位移关系代入式(2),消去εij,就可以得到式(4)。 因此二类变量广义变分原理是三类变量广义变分原理的一个特殊情况。
  
  在有限元法和工程弹性理论中,广义变分原理有广泛的应用。例如,在板壳弯曲的有限元计算中,用它处理变形的不协调性,可得到较好的结果。对于解决几何非线性问题,胡-鹫津原理是一个有力的工具。在工程弹性理论中,广义变分原理可用于推导各种近似理论;在弹性振动和稳定理论中,可用于求固有频率和临界载荷,并能获得较好的结果。
  
  

参考书目
   胡海昌著:《弹性力学的变分原理及其应用》,科学出版社,北京,1981。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条