1) quantization of electric charge
电荷量子化条件
2) quantization condition
量子化条件
1.
Based on the quantization condition derived from the analytical transfer matrix method(ATMM),we study exact eigenenergy and energy spectrum relation of non-shape-invariant potentials in SUSYQM.
基于分析转移矩阵方法(ATMM)的量子化条件,研究了超对称量子力学中非形状不变势的精确能谱及两伴随势之间的能谱关系,与其它方法给出的结果相比,其结果较为精确,并证实在非破缺条件下,其能谱关系为E(n+)=En(+-1),而在破缺条件时,能谱关系则为E(n+)=E(n-)。
4) charge quantization
电荷量子化
1.
The results show that when charge quantization is taken into account,the charge in the resonator has the characteristic of quantum vibration;the quantum current and the fluctuation are related to the charge quantum and Planck constant,respectively,and the size is dete.
结果表明,基于电荷量子化的事实,谐振腔中电荷具有量子振荡行为,量子电流关系及其量子涨落分别与电荷量子、Planck常数等有关,大小决定于体系的自感参量。
2.
The results show that,taking account of the charge quantization,the quantum fluctuation of the current is zero under the eigenstate of ladder operator,but fluctuations of the charge and the energy aren t zero,related with the quantum character of charge respectively,and the.
结果表明,计及电荷量子化的事实,在阶梯算符本征态下介观电子谐振腔中电流的量子涨落为零,而电荷与能量的量子涨落不为零,分别与电荷的量子化性质有关,大小决定于系统自感、电容、栅压和形状因子以及状态参量等因素。
3.
On the basis of the charge quantization,the quantum fluctuations of the mesoscopic LC circuit under the eigenstate of ladder operator are calculated,and the effects of the parameters on the fluctuations are investigated.
考虑基于电荷量子化的事实,计算阶梯算符本征态下介观LC电路的量子涨落,研究影响该量子涨落的因素。
5) EBK quantization condition
EBK量子化条件
6) Bohr quantized condition
玻尔量子化条件
补充资料:单量子阱(见量子阱)
单量子阱(见量子阱)
single quantum well
单且子阱sillgle quantum well见量子阱。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条