1) electric charge quantum
电荷量子
1.
The value of electric charge quantum Q is estimated by use of least squares method in total space.
应用参数估计和假设检验的数学方法对密立根油滴实验中的油滴电量(随机变量)Q在各样本区间的分布进行了分析,并对总体样本用最小二乘法估计了电荷量子e的值。
2) charge quantization
电荷量子化
1.
The results show that when charge quantization is taken into account,the charge in the resonator has the characteristic of quantum vibration;the quantum current and the fluctuation are related to the charge quantum and Planck constant,respectively,and the size is dete.
结果表明,基于电荷量子化的事实,谐振腔中电荷具有量子振荡行为,量子电流关系及其量子涨落分别与电荷量子、Planck常数等有关,大小决定于体系的自感参量。
2.
The results show that,taking account of the charge quantization,the quantum fluctuation of the current is zero under the eigenstate of ladder operator,but fluctuations of the charge and the energy aren t zero,related with the quantum character of charge respectively,and the.
结果表明,计及电荷量子化的事实,在阶梯算符本征态下介观电子谐振腔中电流的量子涨落为零,而电荷与能量的量子涨落不为零,分别与电荷的量子化性质有关,大小决定于系统自感、电容、栅压和形状因子以及状态参量等因素。
3.
On the basis of the charge quantization,the quantum fluctuations of the mesoscopic LC circuit under the eigenstate of ladder operator are calculated,and the effects of the parameters on the fluctuations are investigated.
考虑基于电荷量子化的事实,计算阶梯算符本征态下介观LC电路的量子涨落,研究影响该量子涨落的因素。
3) quantization of electric charge
电荷量子化条件
4) electron magnetic focusing
电子荷质比测量
5) charge qubit
电荷量子比特
1.
Taking the initial mixed state of a charge qubit and a single-mode quantum field into account,we compute the entanglement degree for the detuned system between them by the Peres PPT(positive partial transposition) criterion,and investigate the function of the mixture λ and the detuning quantity Δ to control the entanglement.
量子纠缠是量子信息和量子计算的关键资源,研究初态为混合态的电荷量子比特与单模量子化光场之间的纠缠,根据Peres的可分离态的密度矩阵部分转置正定(PPT)判据,测量系统的纠缠并观察初态的混合度λ和失谐量Δ对系统纠缠随时间演化的影响。
6) quantity of electricity
电量,电荷
补充资料:单量子阱(见量子阱)
单量子阱(见量子阱)
single quantum well
单且子阱sillgle quantum well见量子阱。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条