1) SOCS
相干系统与双线性系统
1.
An approximate algorithm,SOCS algorithm,calculating point intensity of partially coherent optical imaging system,is discussed.
讨论了部分相干成像系统空间点光强的一种近似算法——即通过特征值分解的方法将部分相干成像系统的Hopkins公式展开为N阶相干系统之和的相干系统与双线性系统算法,并提出了优化的N取值方案。
2) bilinear systems
双线性系统
1.
Design of optimal tracking controllers with observer for bilinear systems;
采用观测器的双线性系统最优跟踪控制器设计
2.
Comparative study on controllability relationship of quantum mechanical systems and bilinear systems;
量子力学系统与双线性系统可控性关系的对比研究
3.
State feedback predictive control on bilinear systems;
双线性系统的状态反馈预测控制
3) bilinear system
双线性系统
1.
Predictive functional control algorithm of bilinear systems;
一种双线性系统的预测函数控制算法
2.
Estimation of parameters for fault diagnosis in bilinear system;
参数估计法在双线性系统故障诊断中的应用
3.
The Hamiltonian extension of bilinear systems;
双线性系统的Hamilton扩张系统
4) main line of the system
系统干线
5) main line system
干线系统
6) two-phase systems
双相系统
补充资料:双线性系统
在线性状态方程(见状态空间法)中引入状态变量和控制变量的交互乘积项所导出的一类系统。双线性系统状态方程的一般形式是
式中分别是状态向量和控制向量,上标T表示转置;A,Pi和B均为常系数矩阵;dx/dt表示x对时间t的微商。这类状态方程的特点是,它相对于状态或控制在形式上分别是线性的,双线性的名称即源于此。但同时相对于状态和控制来说,系统则不是线性的。它实际上是一类具有比较简单形式的特殊非线性系统。双线性系统模型是对线性系统模型的推广,它能更准确地描述一类实际过程。生物繁殖过程就是一个典型的例子,用状态变量x表示种群中生物体的数量,控制变量u表示可人为控制的净增殖率,则控制种群中生物体数量的繁殖过程可用形式为dx/dt=ux的一个双线性系统来描述。双线性系统模型已被广泛用于工程、生物、人体、经济和社会问题的研究。例如,化学反应中的催化作用问题;人体内的水平衡过程、体温调节过程、呼吸中氧和二氧化碳交换过程、心血管调节过程等问题;细胞内的某些生物化学反应问题;社会和经济领域中的人口问题,动力资源问题,钢铁、煤炭、石油产品生产问题等。
双线性系统的研究始于60年代,70年代以来得到了广泛的重视和迅速的发展,成为非线性系统研究中比较成熟的分支之一。双线性系统理论中已有的主要结果为:
① 双线性系统具有变结构系统的一些特征,因而有一定的自适应性(见适应控制系统)。
② 对于控制变量受限制(即控制变量的大小必须在一定的界限内)的情况,已经找到用频率域语言表达的稳定性条件。
③ 双线性系统具有比线性系统更好的能控性。即使控制变量受限制,系统仍可能是完全能控的。已经获得系统完全能控的一些充分条件。
④ 用李雅普诺夫稳定性理论能够求得双线性系统的镇定控制解,即可找到一个反馈控制律u=u(x)使系统实现全局稳定。这种控制函数是开关型或饱和型的,开关曲面(或曲线)对状态变量而言是二次曲面(或曲线)。
⑤ 采用动态规划或极大值原理已能解决双线性系统的一些最优控制问题,如最速控制,最省燃料控制,以及离散双线性系统和随机双线性系统的最优控制等。
双线性系统理论已有不少实际应用的例子。例如核电站、核动力装置中核裂变和热交换过程的最优控制,人口预测和控制等。
参考书目
R.R.Mohle,Bilinear Control Processes,Academic Press, New York,1973.
式中分别是状态向量和控制向量,上标T表示转置;A,Pi和B均为常系数矩阵;dx/dt表示x对时间t的微商。这类状态方程的特点是,它相对于状态或控制在形式上分别是线性的,双线性的名称即源于此。但同时相对于状态和控制来说,系统则不是线性的。它实际上是一类具有比较简单形式的特殊非线性系统。双线性系统模型是对线性系统模型的推广,它能更准确地描述一类实际过程。生物繁殖过程就是一个典型的例子,用状态变量x表示种群中生物体的数量,控制变量u表示可人为控制的净增殖率,则控制种群中生物体数量的繁殖过程可用形式为dx/dt=ux的一个双线性系统来描述。双线性系统模型已被广泛用于工程、生物、人体、经济和社会问题的研究。例如,化学反应中的催化作用问题;人体内的水平衡过程、体温调节过程、呼吸中氧和二氧化碳交换过程、心血管调节过程等问题;细胞内的某些生物化学反应问题;社会和经济领域中的人口问题,动力资源问题,钢铁、煤炭、石油产品生产问题等。
双线性系统的研究始于60年代,70年代以来得到了广泛的重视和迅速的发展,成为非线性系统研究中比较成熟的分支之一。双线性系统理论中已有的主要结果为:
① 双线性系统具有变结构系统的一些特征,因而有一定的自适应性(见适应控制系统)。
② 对于控制变量受限制(即控制变量的大小必须在一定的界限内)的情况,已经找到用频率域语言表达的稳定性条件。
③ 双线性系统具有比线性系统更好的能控性。即使控制变量受限制,系统仍可能是完全能控的。已经获得系统完全能控的一些充分条件。
④ 用李雅普诺夫稳定性理论能够求得双线性系统的镇定控制解,即可找到一个反馈控制律u=u(x)使系统实现全局稳定。这种控制函数是开关型或饱和型的,开关曲面(或曲线)对状态变量而言是二次曲面(或曲线)。
⑤ 采用动态规划或极大值原理已能解决双线性系统的一些最优控制问题,如最速控制,最省燃料控制,以及离散双线性系统和随机双线性系统的最优控制等。
双线性系统理论已有不少实际应用的例子。例如核电站、核动力装置中核裂变和热交换过程的最优控制,人口预测和控制等。
参考书目
R.R.Mohle,Bilinear Control Processes,Academic Press, New York,1973.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条