1) infinite norm
无穷范数
1.
Under the sense of fuzzy satisfactory degree,the values of soft constraints and infinite norms of related vectors are transformed into satisfactory degree.
在模糊满意度的意义下,将软约束和有关向量无穷范数的取值转换为满意度。
2.
A new algorithm for detecting dim moving target in IR image sequence by the infinite norm of discontinuous frame difference vector is proposed in this paper.
提出了运用隔帧差分向量无穷范数检测红外图像序列中运动弱小目标一种新算法。
3.
According to the sense of fuzzy satisfactory degree, the values of soft constraint and infinite norms of related vectors are transformed into satisfactory degree.
在模糊满意度的意义下,将软约束和有关向量无穷范数的取值转换为满意度。
2) L∞-minimization
无穷范数最小
3) infinity-norm normalization
无穷范数归一化
1.
,a fractional lower order minimum variance distortionless response(FrMVDR) DOA estimation algorithm and an infinity-norm normalization MVDR(Inf-MVDR) DOA estimation algorithm.
研究了对称α稳定分布(SαS)冲击杂波下的多输入多输出(MI MO)雷达目标波达方向(DOA)估计问题,分别提出基于分数低阶最小方差无畸变响应(Fr MVDR)的MI MO雷达DOA估计算法和无穷范数归一化最小方差无畸变响应(Inf-MVDR)算法。
4) infinite series
无穷级数
1.
Application of Monte Carlo method to infinite series;
蒙特卡罗方法在无穷级数中的应用
2.
A quantum mechanics method of the sum of infinite series;
无穷级数求和的一种量子力学解法
3.
A note on convergence of infinite series in a Banach space;
关于Banach空间中无穷级数收敛性的注记
5) infinity series
无穷级数
1.
The main purpose of this paper is using the elementary method and Euler product formula to study the properties of the infinity series involving the Smarandache-Type function,and obtain its two interesting identities.
研究了一类包含Smarandache-Type可乘函数Fk(n)与Gk(n)的无穷级数及其算术性质,并利用初等方法及欧拉积公式得到了该级数的两个有趣的恒等式,从而推广了关于Smarandache-Type可乘函数的算术性质。
6) non-terminating decimal
无穷小数
补充资料:Luxemburg范数
Luxemburg范数
Luxemburg nonn
L峨曰血叱范数〔I一血叱~;J如盆c服6yP住肋p-Ma] 函数 ,‘x!.(M,一、{*:*>o,丁、(,一’x(:))‘:‘1}, G这里M(u)是关于正的u递增的偶凸函数, 怒“一’M(u)一忽u(M(u))一,一0,对“>0,M(“)>0,且G是R”中的有界集.此范数的性质曾由W.A.J.h以油比飞〔11作了研究.L~b鸣范数等价于O正ez范数(见0口厄空间(C旧允2 sP创芜)),且 I{x}I(,)簇1 lx}I,蕊2 11 x 11(、).如果函数M(u)和N(u)是互补(或互为对偶)的(见O市口类(Or比zc地”‘、则 ,,·,,(一sun{)·(!,,‘!,“!:,,,,,《一‘,}·如果z‘(t)是可测子集E CG的特征函数,则 !l:二11‘M、-一下尖二一. ““启”‘川M一’(l/n篮‘E)’
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条