说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 概率逼近法
1)  probability approaching method
概率逼近法
2)  probabilistic approximation
概率逼近
1.
By means of Pettis integral,stochastic process,moment-generating functions and operator-valued mathematical expect,general probabilistic approximations of exponential formulas,generating theorems and estimations of its convergent rates are given for C-semigroups.
借助Pettis积分、随机过程、矩生成函数及算子值数学期望,给出了一般形式的C半群概率逼近指数公式、生成定理及其收敛速度的估计式,也从另一个角度得出C半群概率表示的Vonorovskaya型渐近公式。
3)  probabilistic approximation
概率型逼近
1.
Making use of the formula of and the inequality of,this paper has deduced two types of probabilistic approximation of C-semigroups and the estimating of convergent rate.
以Taylor公式和Holder不等式为工具,得出了半群的两种概率型逼近及收敛速度的估计。
2.
Making use of general Pettis integral,operator-valued mathematical expectation and continuous modified modulus,this paper has deduced the probabilistic approximation and convergent rates about exponentially bounded C-semigroups, which has improved existing results.
借助广义Pettis积分、算子值数学期望、连续修正模等概念,得到了指数有界C半群的概率型逼近式及收敛速度的估计式,改进了已有的结果。
3.
Then,using Taylor expansion of the semigroup,Holder s inequality and estimations of moment-generating functions of some suitable random variables,some briefly probabilistic approximations and estimations of convergent rates are obtained for C-semigroups.
借助于算子值数学期望以及概率论方法,得到了Banach空间上指数有界的C半群的概率表示式,进而利用T ay lor展开式、Holder不等式及适当的随机变量的矩生成函数估计式等工具,以较为简化的形式给出了C半群概率型逼近及收敛速度的估计式。
4)  approximable concept
逼近概念
5)  approximate probability method
近似概率法
1.
However,the authors make use of an approximate probability method to calculate the reliability of the stability against sliding of the gravity dams.
目前重力坝仍采用安全系数法设计 ,而本文作者使用近似概率法对重力坝进行了抗滑稳定可靠度计
6)  approach rate
逼近率
1.
Objective In order to make up the deficiency of only considering the approach rate when constructing objects,a method to construct objects in the dynamic state is proposed.
目的为弥补仅从逼近率(邻接率)构造实体方法的不足,探讨了一种在动态情形下构造实体的方法。
补充资料:渐近逼近法
分子式:
CAS号:

性质:又称润滑逼近,逐步逼近,渐近逼近法。是数学中求解函数的一种叠代方法。对函数类A中给定的函数f(x),要求在另一类较简单的便于计算的函数类B中,求函数p(x)∈B,使P(x)与f(x)之差在某种度量意义下最小。函数类A通常是C[a、b],函数类B通常是代数多项式、分式有理函数或三角多项式。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条